Supplementary Material

Electronic Structure, Magnetoresistance and Spin Filtering in Gr|2ML-CrI₃|Gr van der Waals Magnetic Tunnel Junctions

Yibin Zhang,^a Jie Liu,^{a,†} Xuan Shi,^{b,c} Renhao Deng,^a Huan Tang,^a Hong Chen,^a and Hongkuan Yuan,^{a,}[†]*

^a School of Physical Science and Technology, Southwest University, Chongqing, 400715, China

^b School of Mechanical Engineering, Shaanxi University of Technology, Shaanxi, 723001, China

^c Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Shaanxi, 723001, China

) Equal contribution

*) Corresponding Author: <u>yhk10@swu.edu.cn</u> (Hongkuan Yuan), Tel.: +86-023-68252355

Contents:

FIG. S1 The spin-polarized band structure and the density of state (DOS) of the monolayer CrI_3 obtained with PBE+U calculations. The blue and red curves denote the spin-up and spin-down bands (left panel), respectively; blue and green lines denote the Cr and I atoms (right panel), respectively.

FIG. S2 The band structure of the graphene monolayer obtained with PBE+U calculations.

FIG. S3. (a) Spin-up density difference and (b) spin-down density difference $\rho = \rho_{(\text{Heter})} - \rho_{(\text{CrI3})} - \rho_{(\text{Gr})}$ of Gr|2ML-CrI₃|Gr heterostructure from side-view (Isosurface value: 0.0015 e/Å³). Green and blue colors denote the accumulation and depletion of density regions, respectively.

FIG. S4. Band structures of Gr|2ML-CrI₃(AB')|Gr heterostructure with inter-layer ferromagetic (FM) ordering between CrI₃ layers.

FIG. S5. Band structures of $Gr|2ML-CrI_3(AB')|Gr$ heterostructure with inter-layer antiferromagetic (AFM) ordering between CrI_3 layers.

FIG. S1 The spin-polarized band structure and the density of state (DOS) of the monolayer CrI_3 obtained with PBE+U calculations. The blue and red curves denote the spin-up and spin-down bands (left panel), respectively; blue and green lines denote the Cr and I atoms (right panel), respectively.

FIG. S2 The band structure of the graphene monolayer obtained with PBE+U calculations.

FIG. S3. (a) Spin-up density difference and (b) spin-down density difference $\rho = \rho_{(Heter)} - \rho_{(CrI3)} - \rho_{(Gr)}$ of Gr|2ML-CrI₃|Gr heterostructure from side-view (Isosurface value: 0.0015 e/Å³). Green and blue colors denote the accumulation and depletion of density regions, respectively.

Note:

(i) The charge transferred from the spin-up states is more than that from the spindown states for Gr layers, resulting in the negative magnetic moment on C atoms; (ii) all the charges transferred from Gr layers are filled in the spin-up states of CrI_3 layers, indicating that the band gap and thus the spin-dependent tunneling barrier height will be changed to influence the transport properties; (iii) charge transfers from the spindown states (blue colors in Fig.S3b) to the spin-up states in Cr atoms (green colors in Fig.S3a) will enhance the local magnetic moment of Cr atoms.

FIG. S4. Band structures of Gr|2ML-CrI₃(AB')|Gr heterostructure with inter-layer ferromagetic (FM) ordering between CrI₃ layers.

FIG. S5. Band structures of $Gr|2ML-CrI_3(AB')|Gr$ heterostructure with inter-layer antiferromagetic (AFM) ordering between CrI_3 layers.