Supplementary materials

β-sitosterol and oleanolic acid as anticancer potential through inhibition of human estrogenic *17beta-hydroxysteroid dehydrogenase type-1* based on *in silico* approach

Alfinda Novi Kristanti^{a,b,*}, Nanik Siti Aminah^{a,b}, Imam Siswanto^{a,c}, Yosephine Sri Wulan Manuhara^{b,d} Muhammad Ikhlas Abdjan^{a,e}, Andika Pramudya Wardana^{a,e}, Ei Ei Aung^{a,f}, Yoshiaki Takaya^g

^aDepartement of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia. E-mail: nanik-s-a@fst.unair.ac.id

^bBiotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga

^cBioinformatic Laboratory, UCoE Research Center for Bio-Molecule Engineering Universitas Airlangga, Surabaya, Indonesia

^dDepartement of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia

^ePh.D. Student of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo, 60115, Surabaya, Indonesia

^fDepartement of Chemistry, Yadanarbon University, Amarapura Township, Mandalay, Myanmar

^gFaculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503 Japan

Tables:

Table S1 Drug-likeness: Physicochemical properties, Lipinski's rule of five, and Veber's rule.

Parameters	TES	C1	C2
Physicochemical			
Log P _{o/w} (X LogP3)	3.32	9.34	7.49
Log S (ESOL)	-3.72	-7.90	-7.32
Fraction Csp3	0.84	0.93	0.90
Lipinski's rule (RO5)			
M LogP	3.59	6.73	5.82
MW (g/mol)	288.42	414.71	456.70
ΣHBD	1	1	2
ΣHBA	2	1	3
Veber's rule			
Rot. Bonds	0	6	1
TPSA (Ų)	37.30	20.23	57.53
Lipinski and Veber valiations/n	0	1	1

Table S2 ADMET prediction of candidates used pkCSM server.

Parameters	TES	C1	C2
Absorption			
Water solubility (log mol/L)	-4.73	-6.88	-4.07
Caco-2 Permeability (log Papp in 10 ⁻⁶ cm/s)	1.54	1.21	1.36
Intestinal Absorption-Human (% Absorbed)	96.53	94.07	98.08
Distribution			
CNS permeability (log PS)	-2.07	-1.33	-1.01
BBB Permeability (log BB)	0.16	0.79	-0.63
Metabolism			
CYP1A2 Inhibitor	No	No	No
CYP2C19 Inhibitor	No	No	No
CYP2C9 Inhibitor	No	No	No
CYP2D6 Inhibitor	No	No	No
CYP3A4 Inhibitor	No	No	No
Excretion			
Total Clearance (log mL/min/Kg)	0.92	0.62	-0.08
Renal OCT2 Substrate	Yes	No	No
Toxicity			
AMES Toxicity	No	No	No
Hepatotoxicity	No	No	Yes
Skin Sensitisation	No	No	No

Comulay	Interactions		Distance	Turner
complex	From	То	(Å)	Types
TES- HSD17B1	His221(HE2)	017	1.76	Conventional hydrogen bond
	H-017	Glu282:OE2	2.10	Conventional hydrogen bond
	Pro187(Alkyl)	Ring B	4.64	Alkyl
	Val225(Alkyl)	Ring C	4.27	Alkyl
	C15	Leu149(Alkyl)	4.44	Alkyl
	C18	Leu149(Alkyl)	4.33	Alkyl
	Tyr218(Pi-Orbitals)	C18	5.28	Pi-Alkyl
	His221 (Pi-Orbitals)	C18	5.27	Pi-Alkyl
	Phe259(Pi-Orbitals)	C15	4.58	Pi-Alkyl
C1-HSD17B1	C18	Leu149(Alkyl)	5.07	Alkyl
	C19	Val188(Alkyl)	4.80	Alkyl
	C1	Cys185(Alkyl)	4.46	Alkyl
	C21	Pro187(Alkyl)	4.35	Alkyl
	C24 ²	Val143(Alkyl)	4.28	Alkyl
	C24 ²	Met147(Alkyl)	4.84	Alkyl
	C24 ²	Leu149(Alkyl)	4.70	Alkyl
	C27	Leu149(Alkyl)	4.57	Alkyl
	C27	Val283(Alkyl)	4.78	Alkyl
C2-HSD17B1	Tyr155(Pi-Orbitals)	C18	4.75	Pi-Alkyl
	Tyr155(Pi-Orbitals)	C5=C6 (Ring B)	5.46	Pi-Alkyl
	Tyr218(Pi-Orbitals)	C27	4.99	Pi-Alkyl
	His221 (Pi-Orbitals)	C26	4.36	Pi-Alkyl
	His221 (Pi-Orbitals)	C27	4.89	Pi-Alkyl
	Phe259(Pi-Orbitals)	C24 ²	4.17	Pi-Alkyl
	Ser142(HG)	O28a	1.82	Conventional hydrogen bond
	Tyr155(HH)	O28a	2.00	Conventional hydrogen bond
	H-O28a	Gly186(O)	1.75	Conventional hydrogen bond
	Ser142(HB3)	O28a	2.66	Carbon hydrogen bond
	C30	Leu149(Alkyl)	5.27	Alkyl
	Tyr155(Pi-Orbitals)	C12=C13 (Ring C)	5.48	Pi-Alkyl
	Tyr155(Pi-Orbitals)	C30	4.64	Pi-Alkyl

Table S3 Molecular docking results to identify the ligand- HSD17B1 Interaction.

Parameters	TES-HSD17B1	C1-HSD17B1	C2-HSD17B1
Total energy (kcal mol ⁻¹)	-112530 ± 894.54	-112389 ± 900.94	-112358 ± 900.91
Potential energy (kcal mol ⁻¹)	-142297 ± 771.59	-142174 ± 777.02	-142134 ± 778.60
Kinetic energy (kcal mol ⁻¹)	29766 ± 195.71	29784 ± 198.71	29776 ± 196.95
RMSD of complex (nm)	0.26 ± 0.03	0.26 ± 0.03	0.27 ± 0.04
RoG (nm)	19.73 ± 0.14	19.79 ± 0.09	19.89 ± 0.11
RMSF (nm)	1.29 ± 0.41	0.93 ± 0.32	1.24 ± 0.45
SASA (nm)	10.05 ± 1.17	9.46 ± 1.00	12.89 ± 1.02

Table S4 Post-MD of each system: The average value of trajectories analysis using 100 ns simulation time.

Figures:

Fig. S1 Molecular docking analysis: The candidate-HSD17B1 Interaction

Fig. S2 The *mdout* analysis plotted along 100 ns of MD simulation of each system.

Fig. S3 Trajectories analysis: Radius of gyration of each system plotted along the 100 ns of MD simulation.

Fig. S4 The average conformational of each complex was plotted along 100 ns for each period.

Fig. S5 Trajectories analysis: The root-mean-square fluctuation of each complex was plotted along 100 ns for each period.

Fig. S6 The key residues conformational on the HSD17B1 active site shows by the RMSF value during the simulation time.

Fig. S7 Trajectories analysis during the simulation over the last 20 ns: The solvent-accessible surface area in the active site (radius 5 Å).