Supporting Information

Towards novel tacrine analogues: Pd(dppf)Cl₂·CH₂Cl₂ catalyzed improved synthesis, *in Silico* docking and hepatotoxicity studies

Aravinda Babu^a, Muthipeedika Nibin Joy^b, K. Sunil^{a*}, Ayyiliath Meleveetil Sajith^{a*}, Sougata Santra^b, Grigory V. Zyryanov^{b,c}, Olga A. Konovalova^b, Ilya I. Butorin^b, Keesaram Muniraju^d

^aDepartment of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, India-572107.

^bInstitute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia-620002.

^cI. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, Yekaterinburg, Russia-620219.

^dGovernment Degree College-Puttur (Affiliated to S.V. University, Tirupati), Narayanavanam Road, Puttur, Chittoor (Dt), Andhra Pradesh, India-517583.

Address of the corresponding author: Dr. K. Sunil; Dr. Ayyiliath Meleveetil Sajith

Email:sunilk999@gmail.com; sajithmeleveetil@gmail.comPh:+91-9480146151

Contents:

1.	General information	2-3
2.	Experimental section	3-28
3.	References	28
4.	Spectral Data	29-76

General information

All experiments were set-up on fume hoods and were carried out under nitrogen atmosphere in Schlenk tubes unless otherwise noted. All solvents and reagents were procured from commercially available sources like Aldrich, Combi-bolcks and Spectrochem. Commercially available neutral alumina was used for column chromatography and all the synthesized molecules were purified by using solvents such as hexane, ethyl acetate, dichloromethane or methanol. ¹H NMR was recorded on Bruker 400MHz AVANCE series or Bruker300 MHz DPX Spectrometer with DMSO- d_6 or CD₃OD as the solvent. All NMR chemical shifts were reported in parts per million (ppm) and all coupling constants are reported in Hertz (Hz). Tetramethylsilane (TMS) ($\delta = 0.00$ ppm) or residual solvent peak in DMSO- d_6 ($\delta = 2.50$ ppm) and CDCl₃ ($\delta = 7.26$ ppm) served as internal standard for recording [1]. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet

(t), quartet (q), doublet-doublet (dd), multiplet (m), and broad (br). Liquid chromatography-mass spectrometry (LC-MS) was used for reaction monitoring and identification for product mass on Agilent 1100 Series LC/MSD mass spectrometer. Microanalyses were performed on PerkinElmer Series II CHNS/O 2400 elemental analyzer. Melting points were determined using a Stuart SMP 3 apparatus. Thin-layer chromatography (TLC) was performed using Merck silica gel 60 F₂₅₄ TLC plates.

Experimental section

Synthesis of 6-bromo tacrine 1

The synthesis of 6-bromo tacrine scaffold 1 was carried out according to the previously reported procedure [2].

Procedure for the synthesis of 6-borylated tacrine derivative 3

To a solution of **1** (0.27 g, 1 mmol, 1.0 equiv) in 1,4-dioxane (2 mL) and water (1 mL), 4,4,4',4',5,5,5',5'-octamethyl-2,2'bi(1,3,2-dioxaborolane) (**2**) (0.38 g, 1.5 mmol, 1.5 equiv) and K_2CO_3 (0.35 g, 2.5 mmol, 2.5 equiv) was added. The mixture was degassed for 10 min under N₂ atmosphere and then Pd(dppf)Cl₂.DCM (0.04 g, 0.05 mmol, 0.05 equiv) was added. The reaction mixture was heated at 100°C for 8h. After the specified time, the reaction mixture was filtered through celite bed, the filtrate was diluted with water (10 mL) and extracted with ethyl acetate (2 x 10 mL). The organic layers separated was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude was washed with dichloromethane to yield B6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4-tetrahydroacridin-9-amine**3**(0.24 g, 73%) as off-white solid.

Mp 117-120°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.11 (d, *J* = 8.6 Hz, 1H, ArH), 7.90 (s, 1H, ArH), 7.51 (dd, *J* = 8.5, 1.2 Hz, 1H, ArH),
6.78 (s, 2H, NH₂), 2.85 (t, *J* = 5.8 Hz, 2H, CH₂), 2.55 (s, 2H, CH₂), 1.81 (m, 4H, CH₂), 1.05 (s, 12H, CH₃).
¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.7, 155.6, 151, 136.7, 131.2, 128.6, 119.9, 115.5, 114.8, 109.4, 55.7, 28.1, 23.0,
21.2.

LC-MS: 325.43 (M+H).

Anal. Calculated for C₁₉H₂₅BN₂O₂: C, 74.08; H, 6.09; N, 10.02; Found: C, 73.9; H, 6.45; N, 9.75%.

Procedure for Suzuki-Miyaura coupling of 3 with aryl bromides for the synthesis of 6-arylated tacrine derivatives 7a-c To a mixture of **3** (0.32 g, 1 mmol, 1.0 equiv) in 1,4-dioxane (2 mL) and water (1 mL), different aryl bromides **4a-c** (1.2 mmol, 1.2 equiv) and K_2CO_3 (0.35 g, 2.5 mmol, 2.5 equiv) were added. The mixture was degassed for 10 min. under N_2 atmosphere and Pd(dppf)Cl₂.DCM (0.04 g, 0.05 mmol, 0.05 equiv) was then added. The reaction mixture was heated at 100°C for 8-10 hours. After the completion of the reaction as monitored by TLC, the reaction mixture was filtered through celite bed and the filtrate was diluted with water (20 mL) and extracted with ethyl acetate (2 x 20 mL). The combined organic layers was dried over anhydrous Na_2SO_4 , filtered and distilled under reduced pressure. The crude was washed with dichloromethane (DCM) twice to afford the titled 6-arylated tacrine derivatives **7a-c** in varying yields (The products were partially soluble in DCM, however this method was convenient as column chromatography was not required).

6-(3-Fluorophenyl)-1,2,3,4-tetrahydroacridin-9-amine (7a)

Yield=78% (0.23 g); off white solid.

Mp 160-164°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 14.11 (d, *J* = 33.5 Hz, 1H, ArH), 9.09 (s, 1H, ArH), 8.79 (s, 1H, ArH), 8.11 (d, *J* = 8.6 Hz, 1H, ArH), 7.97 (d, *J* = 8.2 Hz, 1H, ArH), 7.74 (s, 2H, NH₂), 7.48 (dt, *J* = 14.3, 7.1 Hz, 1H, ArH), 7.18 (t, *J* = 7.7 Hz, 1H, ArH), 2.93 (s, 2H, CH₂), 2.55 (s, 2H, CH₂), 1.78 (s, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.3 (*J* = 242 Hz), 155.7, 151.3, 141.0 (*J* = 8 Hz), 136.9, 135.5, 131.3, 131.2 (*J* = 8 Hz), 123.3, 121.2, 120.1, 115.3, 114.9, 113.9, 109.5, 28.1, 23.0, 21.1.

LC-MS: 293.4 (M+H).

Anal. Calculated for C₁₉H₁₇FN₂: C, 78.06; H, 5.86; N, 9.58; Found: C, 78.41; H, 6.06; N, 9.20%.

6-(3,5-Difluorophenyl)-1,2,3,4-tetrahydroacridin-9-amine (7b)

Yield=78% (0.24 g); off white solid.

Mp 152-155°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 14.07 (s, 1H, ArH), 9.02 (d, *J* = 48.9 Hz, 1H, ArH), 8.78 (d, *J* = 19.9 Hz, 1H, ArH), 8.14 (d, *J* = 8.9 Hz, 2H, ArH), 7.90 (d, *J* = 8.7 Hz, 1H, ArH), 7.63 (d, *J* = 7.6 Hz, 2H, NH₂), 7.21 (t, *J* = 8.8 Hz, 1H, ArH), 2.94 (s, 2H, CH₂), 2.48 (s, 2H, CH₂), 1.81 (s, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.5 (*J* = 14 Hz, 244 Hz), 155.7, 151.5, 141.9, 137.2, 134.1, 131.2, 121.5, 120.0, 115.1, 110.4 (*J* = 26 Hz), 109.7, 103.6 (*J* = 26 Hz), 28.1, 22.9, 21.4, 20.9.

LC-MS: 311.4 (M+H).

Anal. Calculated for C₁₉H₁₆F₂N₂: C, 73.53; H, 5.20; N, 9.03; Found: C, 73.33; H, 4.82; N, 9.01%.

6-(4-Chlorophenyl)-1,2,3,4-tetrahydroacridin-9-amine (7c)

Yield=73% (0.23 g); off white solid.

Mp 168-172°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 14.09 (s, 1H, ArH), 9.14 (s, 1H, ArH), 8.87 (s, 1H, ArH), 8.20 (d, *J* = 8.6 Hz, 1H, ArH), 8.03 (t, *J* = 8.7 Hz, 1H, ArH), 7.94 (d, *J* = 8.3 Hz, 2H, ArH), 7.58 (d, *J* = 8.3 Hz, 2H, NH₂), 3.00 (s, 2H, CH₂), 2.55 (s, 2H, CH₂), 1.85 (s, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.8, 151.6, 137.5, 136.9, 135.9, 133.4, 131.6, 129.2, 121.2, 120.1, 115.5, 109.7, 28.1, 23.1, 21.2.

LC-MS: 310.8 (M+2H).

Anal. Calculated for C₁₉H₁₇ClN₂: C, 73.90; H, 5.55; N, 9.07; Found: C, 74.03; H, 5.19; N, 9.08%.

Procedure for Suzuki-Miyaura coupling of 1 with aryl boronic acids for the synthesis of 6-arylated tacrine derivatives 7a-e

To a solution of 1 (0.27 g, 1 mmol, 1.0 equiv) in 1,4-dioxane (2 mL) and water (1 mL), various boronic acids **5a-e** (1.2 mmol, 1.2 equiv) and K_2CO_3 (0.35 g, 2.5 mmol, 2.5 equiv) was added. The mixture was degassed for 10 min. under N_2

atmosphere and Pd(dppf)Cl₂.DCM (0.04 g, 0.05 mmol, 0.05 equiv) was then added. The reaction mixture was heated at 100° C for 8-10 hours. After the completion of the reaction as monitored by TLC, the reaction mixture was filtered through celite bed and the filtrate was diluted with water (20 mL) and extracted with ethyl acetate (2 x 20 mL). The combined organic layers was dried over anhydrous Na₂SO₄, filtered and distilled off under reduced pressure to obtain the crude product. The crude was washed with dichloromethane to obtain the entitled 6-arylated tacrine derivatives **7a-e** in varying yields (The products were partially soluble in DCM, however this method was convenient as column chromatography was not required).

6-(3-Fluorophenyl)-1,2,3,4-tetrahydroacridin-9-amine (7a)

Yield=84% (0.25 g); off white solid.

6-(3,5-Difluorophenyl)-1,2,3,4-tetrahydroacridin-9-amine (7b)

Yield=80% (0.25 g); off white solid.

6-(4-Chlorophenyl)-1,2,3,4-tetrahydroacridin-9-amine (7c)

Yield=87% (0.27 g); off white solid.

6-(4-Methoxyphenyl)-1,2,3,4-tetrahydroacridin-9-amine (7d)

Yield=80% (0.24 g); off white solid.

Mp 170-173°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 14.02 (s, 1H, ArH), 8.91 (s, 1H, ArH), 8.55 (d, *J* = 8.8 Hz, 1H, ArH), 8.11 (s, 1H, ArH), 8.02 (dd, *J* = 18.8, 8.4 Hz, 1H, ArH), 7.84 (d, *J* = 8.8 Hz, 1H, ArH), 7.71 (d, *J* = 8.6 Hz, 2H, ArH), 7.07 (t, *J* = 9.9 Hz, 2H, ArH), 3.82 (s, 3H, OCH₃), 2.98 (s, 2H, CH₂), 2.52 (s, 2H, CH₂), 1.83 (s, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 160.5, 155.5, 151.7, 143.9, 138.1, 130.6, 128.7, 124.4 (d, *J* = 30.8 Hz), 115.2, 113.8, 109.3, 55.8, 28.2, 21.1 (d, *J* = 53.8 Hz).

LC-MS: 305.2 (M+H).

Anal. Calculated for C₂₀H₂₀N₂O: C, 78.92; H, 6.62; N, 9.20; Found: C, 79.12; H, 6.98; N, 9.60%.

6-(3-Methoxyphenyl)-1,2,3,4-tetrahydroacridin-9-amine (7e)

Yield=78% (0.23 g); off white solid.

Mp 171-174°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 14.11 (s, 1H, ArH), 9.05 (s, 1H, ArH), 8.76 (s, 1H, ArH), 8.12 (d, *J* = 8.7 Hz, 1H, ArH), 7.99 (d, *J* = 8.8 Hz, 1H, ArH), 7.85 (d, *J* = 8.4 Hz, 2H, ArH), 7.05 (d, *J* = 8.4 Hz, 2H, ArH), 3.82 (s, 3H, OCH₃), 2.97 (s, 2H, CH₂), 2.52 (d, *J* = 7.2 Hz, 2H, CH₂), 1.82 (d, *J* = 3.2 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.8, 155.7, 151.1, 136.7 (d, *J* = 74.1 Hz), 131.2 (d, *J* = 33.9 Hz), 128.6, 120.0, 115.6, 114.8, 109.4, 55.7, 28.1, 23.1, 21.2 (d, *J* = 55.8 Hz).

LC-MS: 305.2 (M+H).

Anal. Calculated for C₂₀H₂₀N₂O: C, 78.92; H, 6.62; N, 9.20; Found: C, 78.84; H, 6.85; N, 9.62%.

Procedure for Stille coupling of 1 with tributyl(aryl/vinyl)stannanes for the synthesis of 6-arylated tacrine derivatives 7d-h

To a solution of 1 (0.27 g, 1 mmol, 1.0 equiv) in DMF (2 mL), different tributyl(aryl/vinyl)stannanes **6d-h** (1 mmol, 1.0 equiv) and NaCl (0.09 g, 1.5 mmol, 1.5 equiv) was added. The mixture was degassed for 10 min. under N₂ atmosphere and $Pd(dppf)Cl_2.DCM$ (0.04 g, 0.05 mmol, 0.05 equiv) was then added. The reaction mixture was heated at 100°C for 8-10 hours. After the completion of the reaction as indicated by TLC, the reaction mixture was filtered through celite bed and the filtrate was distilled off under reduced pressure. The residue obtained was purified by column chromatography in neutral

alumina using 1-5% methanol in dichloromethane as eluent to obtain the entitled 6-arylated tacrine derivatives 7d-h in varying yields.

6-(4-Methoxyphenyl)-1,2,3,4-tetrahydroacridin-9-amine (7d)

Yield=80% (0.24 g); off white solid.

6-(3-Methoxyphenyl)-1,2,3,4-tetrahydroacridin-9-amine (7e)

Yield=78% (0.23 g); off white solid.

6-(1-Ethoxyvinyl)-1,2,3,4-tetrahydroacridin-9-amine (7f)

Yield=88% (0.24 g); off white solid.

Mp 160-163°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.08 (d, *J* = 8.8 Hz, 1H, ArH), 7.84 (s, 1H, ArH), 7.48 (t, *J* = 11.4 Hz, 1H, ArH), 6.30 (s, 2H, NH₂), 4.88 (d, *J* = 2.0 Hz, 1H, CH₂), 4.33 (d, *J* = 2.0 Hz, 1H, CH₂), 3.90 (q, *J* = 6.8 Hz, 2H, OCH₂), 2.79 (d, *J* = 5.7 Hz, 2H, CH₂), 2.52 (d, *J* = 5.5 Hz, 2H, CH₂), 1.79 (d, *J* = 4.9 Hz, 4H, CH₂), 1.41 (t, *J* = 7.0 Hz, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 158.2, 148.2, 146.7, 135.4, 124.3, 122.2, 120.1, 117.2, 109.6, 83.9, 63.3, 34.2, 24.1, 23.1, 14.8.

LC-MS: 269.4 (M+H).

Anal. Calculated for C₁₇H₂₀N₂O: C, 76.09; H, 7.51; N, 10.44; Found: C, 76.03; H, 7.72; N, 10.24%.

6-Allyl-1,2,3,4-tetrahydroacridin-9-amine (7g)

Yield=73% (0.17 g); Off-white solid.

Mp 136-143°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.08 (d, *J* = 8.6 Hz, 1H, ArH), 7.42 (d, *J* = 1.7 Hz, 1H, ArH), 7.14 (dd, *J* = 8.6 Hz, 1.8 Hz, 1H, ArH), 6.4 (m, 2H, NH₂), 6.03 (m, 1H, CH), 5.19-5.06 (m, 2H, CH₂), 3.48 (d, *J* = 6.8 Hz, 1H, CH₂), 2.81 (t, *J* = 5.8 Hz, 2H, CH₂), 2.54 (t, *J* = 5.8 Hz, 2H, CH₂), 1.89 (p, *J* = 6.1, 5.7 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.3, 148.9, 140.3, 137.9, 126.4, 124.5, 122.5, 116.5, 115.8, 109.1, 37.7, 33.6, 25.1, 24.2, 23.9, 22.9, 22.9, 21.4.

LC-MS: 239.2 (M+H).

Anal. Calculated for C₁₆H₁₈N₂: C, 80.63; H, 7.61; N, 11.75; Found: C, 80.99; H, 7.44; N, 11.92%.

6-(3-Fluoropyridin-2-yl)-1,2,3,4-tetrahydroacridin-9-amine (7h)

Yield=70% (0.205 g); Brown solid.

Mp 121-123°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.37 - 8.34 (m, 2H, ArH), 8.29 (d, *J* = 8.8 Hz, 1H, ArH), 7.91 - 7.78 (m, 2H, ArH), 7.44 (m, 1H, ArH), 6.51 (s, 2H, NH₂), 2.88 (t, *J* = 5.8 Hz, 2H, CH₂), 2.57 (t, *J* = 5.8 Hz, 2H, CH₂), 1.82 (p, *J* = 6.1, 5.7 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.1, 158.1, 148.5, 146.1, 145.8, 136.2, 134.3, 133.2, 129.4, 126.7, 125.7, 125, 119.5, 114.7, 110.9, 34.1, 24.3, 23, 22.8.

LC-MS: 294.2 (M+H).

Anal. Calculated for C₁₈H₁₆FN₃: C, 73.70; H, 5.50; N, 14.32; Found: C, 73.75; H, 5.64; N, 14.5%.

Procedure for Sonogashira coupling of 1 with alkynes for the synthesis of 6-alkynyl tacrine derivatives 9a-d

To a solution of **1** (0.27 g, 1 mmol, 1.0 equiv) in DMF (2 mL), different alkynes **8a-d** (1.2 mmol, 1.2 equiv), CuI (0.19 g, 1 mmol, 1.0 equiv) and triethylamine (0.28 mL, 2 mmol, 2.0 equiv) was added. The mixture was degassed for 10 min. under

 N_2 atmosphere and Pd(dppf)Cl₂.DCM (0.04 g, 0.05 mmol, 0.05 equiv) was then added. The reaction mixture was heated at 100°C for 8-10 hours. After the completion of the reaction as indicated by TLC, the reaction mixture was filtered through celite bed and the filtrate was concentrated under reduced pressure. The residue obtained was purified by column chromatography in neutral alumina using 1-5% methanol in dichloromethane as eluent to obtain the entitled 6-alkynyl tacrine derivatives **9a-d** in varying yields.

6-((4-Fluorophenyl)ethynyl)-1,2,3,4-tetrahydroacridin-9-amine (9a)

Yield=88% (0.28 g); off white solid.

Mp 132-135°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.16 (d, *J* = 8.5 Hz, 1H, ArH), 7.77 (s, 1H), 7.62 (d, *J* = 5.6 Hz, 2H, ArH), 7.36 (d, *J* = 8.3 Hz, 1H, ArH), 7.26 (t, *J* = 8.4 Hz, 2H, ArH), 6.39 (s, 2H, NH₂), 2.81 (s, 2H, CH₂), 2.53 (s, 2H, CH₂), 1.79 (d, *J* = 4.7 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 163.7 (*J* = 246 Hz), 158.9, 148.4, 146.4, 134.2 (*J* = 8 Hz), 131.5, 125.1, 123.1, 121.8, 119.2, 117.3, 116.5 (*J* = 21 Hz), 110.3, 89.8, 89.2, 34.1, 24.1, 23.0, 22.9.

LC-MS: 305.4 (M+H).

Anal. Calculated for C₂₁H₁₇FN₂: C, 79.72; H, 5.42; N, 8.85; Found: C, 79.84; H, 5.50; N, 8.47%.

6-((3-Chlorophenyl)ethynyl)-1,2,3,4-tetrahydroacridin-9-amine (9b)

Yield=81% (0.27 g); off white solid.

Mp 139-142°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.18 (d, *J* = 8.7 Hz, 1H, ArH), 7.80 (s, 1H, ArH), 7.65 (s, 1H, ArH), 7.54 (d, *J* = 7.1 Hz, 1H, ArH), 7.50 – 7.41 (m, 2H, ArH), 7.38 (dd, *J* = 8.6, 1.1 Hz, 1H, ArH), 6.39 (s, 2H, NH₂), 2.82 (d, *J* = 5.6 Hz, 2H, CH₂), 2.53 (d, *J* = 5.8 Hz, 2H, CH₂), 1.80 (d, *J* = 4.9 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.1, 148.4, 146.4, 133.7, 131.8, 131.1, 130.5, 129.3, 125.1, 124.7, 123.2, 121.4, 91.4, 88.7, 63.2, 34.1, 24.2, 22.9.

LC-MS: 334.4 (M+2H).

Anal. Calculated for C₂₁H₁₇ClN₂: C, 75.78; H, 5.15; N, 8.42; Found: C, 76.16; H, 5.28; N, 8.20%.

6-((4-Chlorophenyl)ethynyl)-1,2,3,4-tetrahydroacridin-9-amine (9c)

Yield=84% (0.28 g); off white solid.

Mp 141-144°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.17 (d, *J* = 8.6 Hz, 1H, ArH), 7.79 (s, 1H, ArH), 7.58 (d, *J* = 8.2 Hz, 2H, ArH), 7.47 (d, *J* = 8.3 Hz, 2H, ArH), 7.37 (d, *J* = 8.4 Hz, 1H, ArH), 6.41 (s, 2H, NH₂), 2.81 (d, *J* = 5.6 Hz, 2H, CH₂), 2.53 (d, *J* = 5.6 Hz, 2H, CH₂), 1.79 (d, *J* = 4.8 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.1, 148.4, 146.4, 133.8, 131.8, 131.3, 131.1, 130.5, 129.3, 125.1, 124.8, 123.2, 121.4, 91.4, 88.7, 63.2, 34.1, 24.2, 22.9.

LC-MS: 334.4 (M+2H).

Anal. Calculated for C₂₁H₁₇ClN₂: C, 75.78; H, 5.15; N, 8.42; Found: C, 76.16; H, 5.28; N, 8.20%.

6-(Pyridin-2-ylethynyl)-1,2,3,4-tetrahydroacridin-9-amine (9d)

Yield=78% (0.23 g); off white solid.

Mp 130-133°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.60 (d, *J* = 4.2 Hz, 1H, ArH), 8.20 (d, *J* = 8.6 Hz, 1H, ArH), 7.84 (t, *J* = 6.6 Hz, 2H, ArH), 7.66 (d, *J* = 7.7 Hz, 1H, ArH), 7.40 (t, *J* = 7.1 Hz, 2H, ArH), 6.44 (s, 2H, NH₂), 2.82 (d, *J* = 5.5 Hz, 2H, CH₂), 2.54 (d, *J* = 5.7 Hz, 2H, CH₂), 1.79 (d, *J* = 4.9 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.1, 150.5, 148.4, 146.3, 142.7, 137.2, 132.1, 127.8, 125.1, 123.9, 123.3, 121.1, 117.7, 110.6, 89.8, 89.1, 34.1, 24.2, 22.9.

LC-MS: 300.4 (M+2H).

Anal. Calculated for C₂₀H₁₇N₃: C, 80.24; H, 5.72; N, 14.04; Found: C, 80.31; H, 6.01; N, 13.95%.

Procedure for Heck coupling of 1 with alkenes for the synthesis of 6-alkenyl tacrine derivatives 11a-d

A mixture of **1** (0.27 g, 1 mmol, 1.0 equiv), alkenes **10a-d** (1.2 mmol, 1.2 equiv), triethylamine (0.42 mL, 3 mmol, 3.0 equiv) and Pd(dppf)Cl₂.DCM (0.04 g, 0.05 mmol, 0.05 equiv) in DMF (2 mL) was heated at 100°C for 8-10 hours. After the completion of the reaction as indicated by TLC, the reaction mixture was filtered through celite bed and the filtrate was

concentrated under reduced pressure. The residue obtained was purified by column chromatography in neutral alumina using 1-6% methanol in dichloromethane as eluent to obtain the titled compounds **11a-d** in varying yields.

Methyl 3-(9-amino-5,6,7,8-tetrahydroacridin-3-yl)acrylate (11a)

Yield=77% (0.22 g); off white solid.

Mp 128 -131°C.

¹H NMR (400 MHz, DMSO- d_6): δ 8.15 (d, J = 8.8 Hz, 1H, ArH), 7.85 (s, 1H, ArH), 7.75 (d, J = 16.0 Hz, 1H, CH), 7.64 (d, J = 8.6 Hz, 1H, ArH), 6.72 (d, J = 16.0 Hz, 1H, CH), 6.35 (s, 2H, NH₂), 3.72 (s, 3H), 2.80 (d, J = 6.1 Hz, 2H, CH₂), 2.53 (d, J = 5.7 Hz, 2H, CH₂), 1.80 (d, J = 5.1 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.1, 158.6, 148.3, 146.7, 145.3, 133.8, 130.4, 123.2, 120.8, 118.5, 110.5, 51.8, 33.9, 24.2, 22.9.

LC-MS: 283.4 (M+H).

Anal. Calculated for C₁₇H₁₈N₂O₂: C, 72.32; H, 6.43; N, 9.92; Found: C, 72.49; H, 6.39; N, 9.55%.

Ethyl 3-(9-amino-5,6,7,8-tetrahydroacridin-3-yl)acrylate (11b)

Yield=80% (0.24 g); off white solid.

Mp 131-134°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.13 (d, *J* = 8.8 Hz, 1H, ArH), 7.84 (s, 1H, ArH), 7.73 (d, *J* = 16.0 Hz, 1H, CH), 7.65 (d, *J* = 8.6 Hz, 1H, ArH), 6.71 (d, *J* = 16.0 Hz, 1H, CH), 6.37 (s, 2H, NH₂), 4.18 (q, *J* = 7.0 Hz, 2H, OCH₂), 2.80 (d, *J* = 5.4 Hz, 2H, CH₂), 2.53 (d, *J* = 5.6 Hz, 2H, CH), 1.79 (d, *J* = 4.9 Hz, 4H, CH₂), 1.24 (t, *J* = 7.0 Hz, 3H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.7, 158.6, 148.3, 146.8, 144.9, 133.9, 130.5, 123.2, 120.8, 118.8, 118.3, 110.5, 60.4, 34.1, 24.1, 22.9, 14.6.

LC-MS: 297.4 (M+H).

Anal. Calculated for C₁₈H₂₀N₂O₂: C, 72.95; H, 6.80; N, 9.45; Found: C, 72.75; H, 7.08; N, 9.57%.

Tert-butyl 3-(9-amino-5,6,7,8-tetrahydroacridin-3-yl)acrylate (11c)

Yield=75% (0.24 g); off white solid.

Mp 133-135°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.16 (d, *J* = 8.8 Hz, 1H, ArH), 7.84 (s, 1H, ArH), 7.73 (d, *J* = 16.0 Hz, 1H, CH), 7.65 (d, *J* = 8.6 Hz, 1H, ArH), 6.63 (d, *J* = 16.0 Hz, 1H, CH), 6.39 (s, 2H, NH₂), 2.80 (d, *J* = 5.4 Hz, 2H, CH₂), 2.53 (d, *J* = 5.6 Hz, 2H, CH₂), 1.79 (d, *J* = 4.9 Hz, 4H, CH₂), 1.5 (s, 9H, CH₃).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.1, 158.7, 144.2, 134.1, 130.4, 120.7, 120.6, 118.3, 110.5, 80.4, 34.1, 28.4, 24.2, 23.1, 22.9.

LC-MS: 325.2 (M+H).

Anal. Calculated for C₂₀H₂₄N₂O₂: C, 74.04; H, 7.46; N, 8.64; Found: C, 73.96; H, 7.08; N, 8.81%.

6-Styryl-1,2,3,4-tetrahydroacridin-9-amine (11d)

Yield=78% (0.23 g); off white solid.

Mp 135-137°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.16 (d, *J* = 8.8 Hz, 1H, CH), 7.75 (s, 1H, ArH), 7.66 (d, *J* = 7.5 Hz, 3H, ArH), 7.44-7.37 (m, 4H, ArH), 7.29 (t, *J* = 7.5 Hz, 1H, CH), 6.63 (s, 2H, NH₂), 2.88 (d, *J* = 5.4 Hz, 2H, CH₂), 2.55 (d, *J* = 6.3 Hz, 2H, CH₂), 1.83 (d, *J* = 4.9 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 158.3, 148.4, 147.4, 137.6, 136.9, 129.4, 129.2, 129.1, 128.1, 127.1, 127.1, 122.8, 120.5, 116.9, 109.7, 34.1, 24.2, 23.3, 23.1.

LC-MS: 301.4 (M+H).

Anal. Calculated for C₂₁H₂₀N₂: C, 83.96; H, 6.71; N, 9.33; Found: C, 84.33; H, 6.92; N, 9.71%.

Procedure for Buchwald coupling of 1 with amines for the synthesis of 6-amino tacrine derivatives 13a-g

To a solution of **1** (0.27 g, 1 mmol, 1.0 equiv) in 1,4-dioxane (2 mL), amines **12a-g** (1.3 mmol, 1.3 equiv) and KOt-Bu (0.45 g, 4 mmol, 4.0 equiv) was added. The reaction mixture was degassed for 10 min. under N₂ atmosphere and then $Pd(dppf)Cl_2.DCM$ (0.04 g, 0.05 mmol, 0.05 equiv) was added. The reaction mixture was heated at 100°C for 8-10 hours. After completion of the reaction as indicated by TLC, the reaction mixture was filtered through celite bed and the filtrate

was concentrated under reduced pressure. The residue obtained was purified by column chromatography in neutral alumina using 5-8% methanol in dichloromethane as eluent to obtain the entitled 6-amino tacrine derivatives **13a-g** in varying yields.

N3-(4-methoxybenzyl)-5,6,7,8-tetrahydroacridine-3,9-diamine (13a)

Yield=72% (0.24 g); brown solid.

Mp 146-149°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.44 (s, 1H, NH), 8.10 (d, *J* = 9.2 Hz, 1H, ArH), 7.84 (s, 2H, ArH), 7.52 – 7.43 (m, 1H, ArH), 7.27 (d, *J* = 8.4 Hz, 2H, ArH), 6.92 (d, *J* = 9.1 Hz, 1H, ArH), 6.86 (d, *J* = 8.5 Hz, 2H, ArH), 6.64 (s, 2H, NH₂), 4.24 (d, *J* = 5.2 Hz, 2H, CH₂), 3.69 (s, 3H, OCH₃), 2.75 (d, *J* = 5.6 Hz, 2H, CH₂), 2.41 (d, *J* = 5.6 Hz, 2H, CH₂), 1.74 (d, *J* = 4.7 Hz, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 158.7, 154.7, 152.1, 149.9, 141.0, 130.9, 129.1, 124.4, 116.2, 114.2, 106.6 (d, *J* = 42.0 Hz), 94.8, 55.5, 45.9, 28.1, 22.7, 21.5 (d, *J* = 57.2 Hz).

LC-MS: 334.4 (M+H).

Anal. Calculated for C₂₁H₂₃N₃O: C, 75.65; H, 6.95; N, 12.60; Found: C, 75.50; H, 6.84; N, 12.20%.

N-(4-(trifluoromethyl)benzyl)-5,6,7,8-tetrahydroacridine-3,9-diamine (13b)

Yield=80% (0.30 g); off white solid.

Mp 151-154°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.84 (s, 1H, NH), 7.69 (d, *J* = 8.0 Hz, 2H, ArH), 7.60 (d, *J* = 8.2 Hz, 2H, ArH), 6.8 (dd, *J* = 9.0 Hz, 1H, ArH), 6.67 (t, *J* = 6.1 Hz, 1H, ArH), 6.37 (d, *J* = 2.3 Hz, 1H, ArH), 6.08 (s, 2H, NH₂), 4.24 (d, *J* = 5.2 Hz, 2H, CH₂), 2.88 (d, *J* = 5.4 Hz, 2H, CH₂), 2.45 (d, *J* = 6.3 Hz, 2H, CH₂), 1.78 (m, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.9, 158.9, 148.4, 146.3, 145.1, 133.7, 128.4 (*J* = 32 Hz), 126.2, 125.6 (*J* = 292 Hz), 123.5, 121.2, 119.1, 110.6, 42.9, 34.1, 24.2, 23.0, 22.9.

LC-MS: 372.2 (M+H).

Anal. Calculated for C₂₁H₂₀F₃N₃: C, 67.91; H, 5.47; N, 11.31; Found: C, 67.93; H, 5.75; N, 11.62%.

N-(3-(trifluoromethyl)benzyl)-5,6,7,8-tetrahydroacridine-3,9-diamine (13c)

Yield=75% (0.28 g); off white solid.

Mp 150-152°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.84 (s, 1H, NH), 7.73 (d, *J* = 8.0 Hz, 2H, ArH), 7.62-7.56 (m, 3H, ArH), 6.81 (dd, *J* = 9.0 Hz, 1H, ArH), 6.68-6.57 ((m, 1H, ArH), 6.41 (d, *J* = 2.3 Hz, 1H, ArH), 6.06 (s, 2H, NH₂), 4.45 (d, *J* = 6.0 Hz, 2H, CH₂), 2.66 (d, *J* = 5.4 Hz, 2H, CH₂), 2.45 (d, *J* = 6.3 Hz, 2H, CH₂), 1.78 (m, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.1, 160.6, 160.1, 157.4, 145.9, 142.7, 141.9, 137.0, 136.7, 134.8 (*J* = 28 Hz), 129.1, 128.7, 124.0 (*J* = 274 Hz), 115.0, 47.6, 33.0, 27.8, 26.1, 25.6, 13.5.

LC-MS: 371.9 (M+H).

Anal. Calculated for C₁₈H₂₀N₂O₂: C, 67.91; H, 5.43; N, 11.31; Found: C, 67.55; H, 5.91; N, 12.15%.

N-(3,5-difluorobenzyl)-5,6,7,8-tetrahydroacridine-3,9-diamine (13d)

Yield=84% (0.28 g); off white solid.

Mp 139-143°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.84 (s, 1H, NH), 7.09 (m, 3H, ArH), 6.79 (dd, *J* = 9.0 Hz, 1H, ArH), 6.64-6.57 ((m, 1H, ArH), 6.41 (d, *J* = 2.4 Hz, 1H, ArH), 6.03 (s, 2H, NH₂), 4.39 (d, *J* = 6.0 Hz, 2H, CH₂), 2.67 (d, *J* = 5.4 Hz, 2H, CH₂), 2.45 (d, *J* = 6.3 Hz, 2H, CH₂), 1.78 (m, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 163.6 (*J* = 242 Hz), 158.9, 157.0, 156.5, 148.1, 147.8, 145.6, 122.5, 114.8 (*J* = 37 Hz), 110.1, 109.7 (*J* = 32 Hz), 106.1, 103.8, 45.6, 33.3, 24.2, 23.3, 22.7.

LC-MS: 339.8 (M+H).

Anal. Calculated for C₂₀H₁₉F₂N₃: C, 70.78; H, 5.64; N, 12.38; Found: C, 70.52; H, 5.94; N, 12.42%.

N3-phenyl-5,6,7,8-tetrahydroacridine-3,9-diamine (13e)

Yield=70% (0.20 g); Yellow solid.

Mp 140-144°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.78 (s, 1H, NH), 8.13 (d, *J* = 9.1 Hz, 1H, ArH), 7.35 (dd, *J* = 8.2 Hz, 7.2 Hz, 2H, ArH), 7.29-7.22 (m, 3H, ArH), 7.1 (m, 3H, ArH, NH₂), 6.99 (t, *J* = 7.3 Hz, 1H, ArH), 2.84 (d, *J* = 5.4 Hz, 2H, CH₂), 2.48 (d, *J* = 6.3 Hz, 2H, CH₂), 1.8 (m, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.8, 151.2, 146.2, 144.1, 142.3, 129.7, 124.3, 121.9, 119.3, 116.9, 109.8, 107.6, 103.2, 30.8, 23.3, 22.4, 22.1.

LC-MS: 290.2 (M+H).

Anal. Calculated for C₁₉H₁₉N₃: C, 78.86; H, 6.62; N, 14.52; Found: C, 79.18; H, 6.35; N, 14.63%.

N3-methyl-N3-phenyl-5,6,7,8-tetrahydroacridine-3,9-diamine (13f)

Yield=68% (0.21 g); Pale yellow solid.

Mp 143-146°C.

¹H NMR (400 MHz, DMSO-*d*₆): δ 8.04 (d, *J* = 9.1 Hz, 1H, ArH), 7.41 (dd, *J* = 8.5 Hz, 7.3 Hz, 2H, ArH), 7.23-7.19 (m, 3H, ArH), 6.96-6.92 (m, 3H, ArH, NH₂), 3.36 (s, 3H, CH₃), 2.78 (d, *J* = 5.9 Hz, 2H, CH₂), 2.48 (d, *J* = 6.3 Hz, 2H, CH₂), 1.82 (m, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 150.9, 149.8, 148.2, 130.1, 124.27, 124.3, 124.1, 123.6, 116.6, 107.8, 48.1, 31.8, 24.2, 23.4, 22.6, 22.4.

LC-MS: 304.2 (M+H).

Anal. Calculated for C₂₀H₂₁N₃: C, 79.17; H, 6.98; N, 13.85; Found: 78.91; H, 7.08; N, 13.46%.

N3-(3,5-difluoropyridin-2-yl)-5,6,7,8-tetrahydroacridine-3,9-diamine (13g)

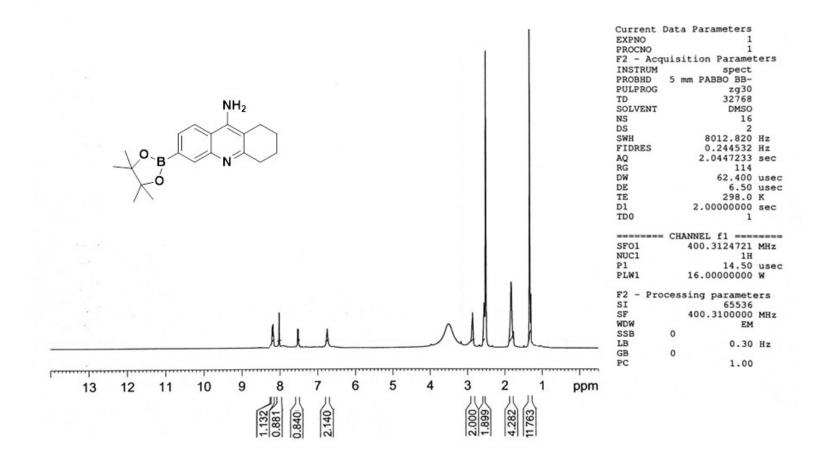
Yield=79% (0.25 g); Off-white solid.

Mp 151-154°C.

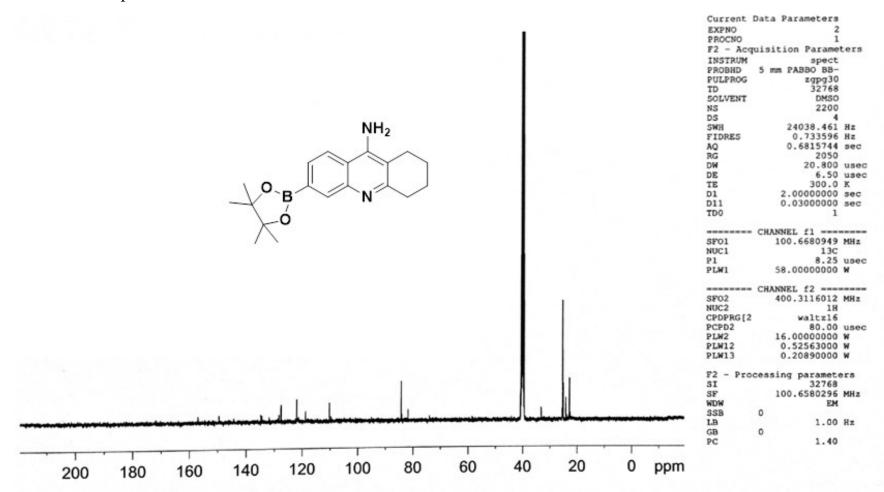
¹H NMR (400 MHz, DMSO-*d*₆): δ 9.07 (s, 1H, NH), 8.28 (d, *J* = 2.2 Hz, 1H, ArH), 8.17 (d, *J* = 2.5 Hz, 1H, ArH), 8.04 (d, *J* = 9.2 Hz, 1H, ArH), 7.89 (m, 1H, ArH), 7.53 (dd, *J* = 9.1Hz, 2.3Hz, 1H, ArH), 7.51 (t, *J* = 7.3 Hz, 1H, ArH), 6.45 (s, 2H, NH₂), 2.8 (d, *J* = 5.4 Hz, 2H, CH₂), 2.54 (d, *J* = 6.3 Hz, 2H, CH₂), 1.81 (m, 4H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 156.8 (*J* = 283 Hz), 151.5 (2C), 149.3, 146.7, 145.1 (*J* = 282 Hz), 142.3 (*J* = 9 Hz), 141.2, 129.3 (*J* = 16 Hz, 5 Hz), 122.6, 117.5, 112.6, 112.3, 108.1, 33.3, 23.8, 22.9.

LC-MS: 327.2 (M+H).

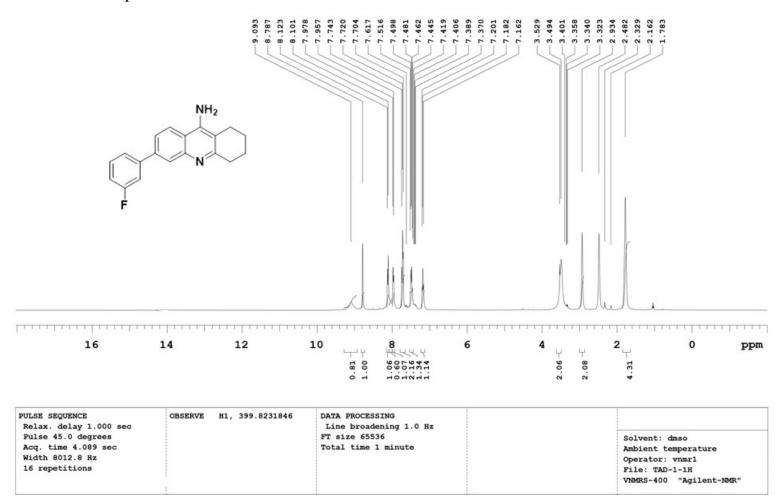

Anal. Calculated for C₁₈H₁₆F₂N₄: C, 66.25; H, 4.94; N, 17.17; Found: C, 65.99; H, 4.58; N, 17.14%.

References


- (1)G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176-2179.
- (2) E. K. Reddy, C. Remya, K. Mantosh, A. M. Sajith, R. V. Omkumar, C. Sadasivan and S. Anwar, *Eur. J. Med. Chem.*, 2017, **139**, 367-377.

Spectral data

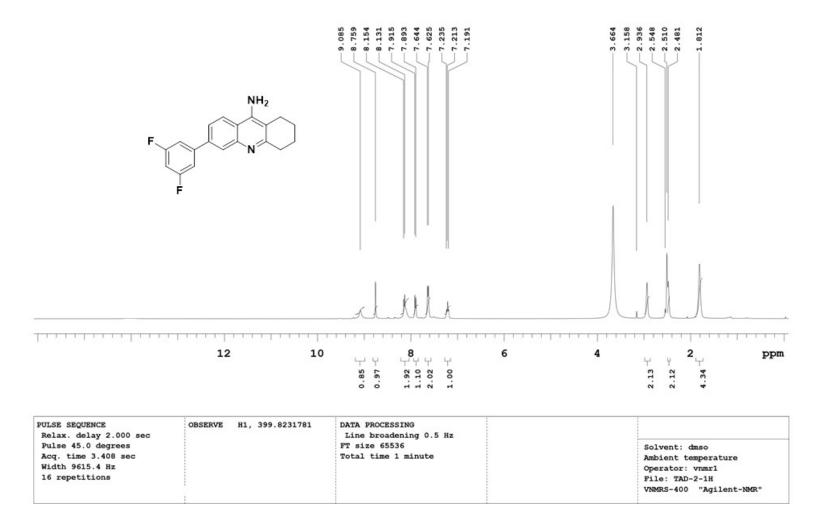
¹H NMR of Compound **3**

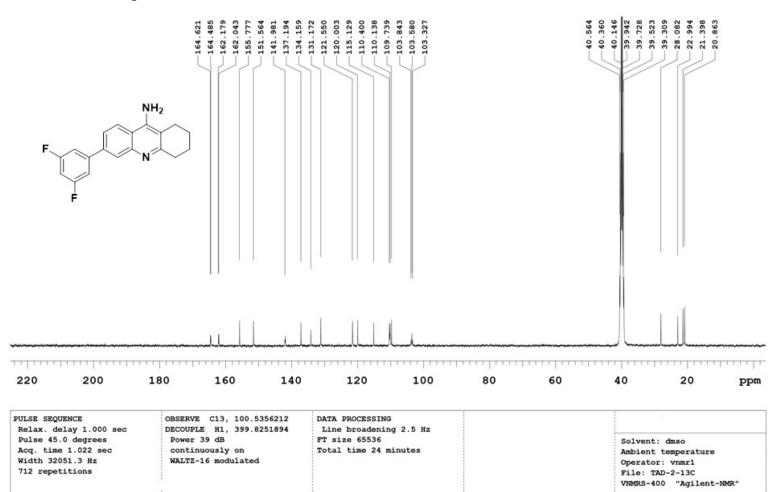


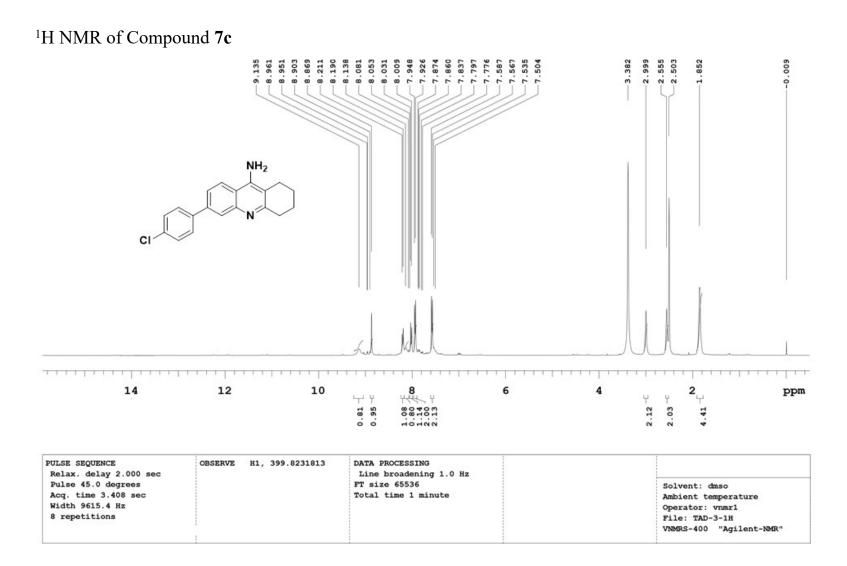
¹³C NMR of Compound **3**

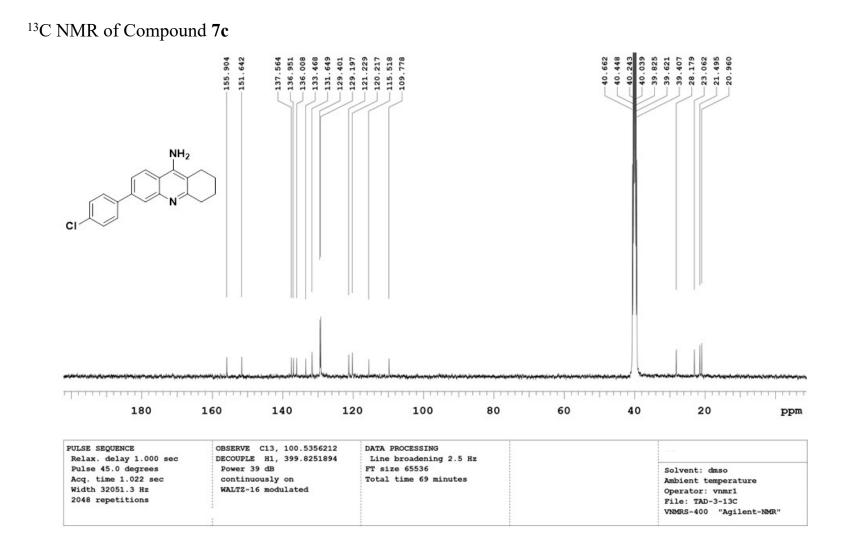


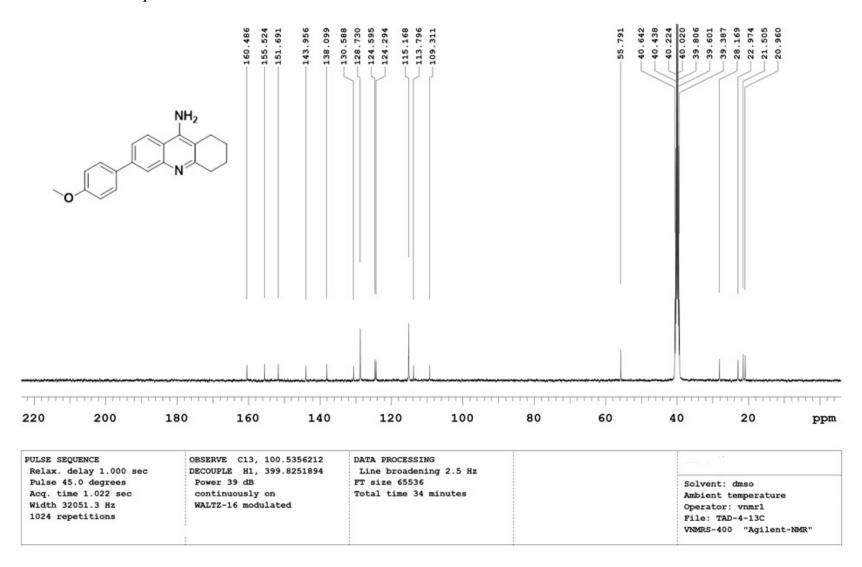
30

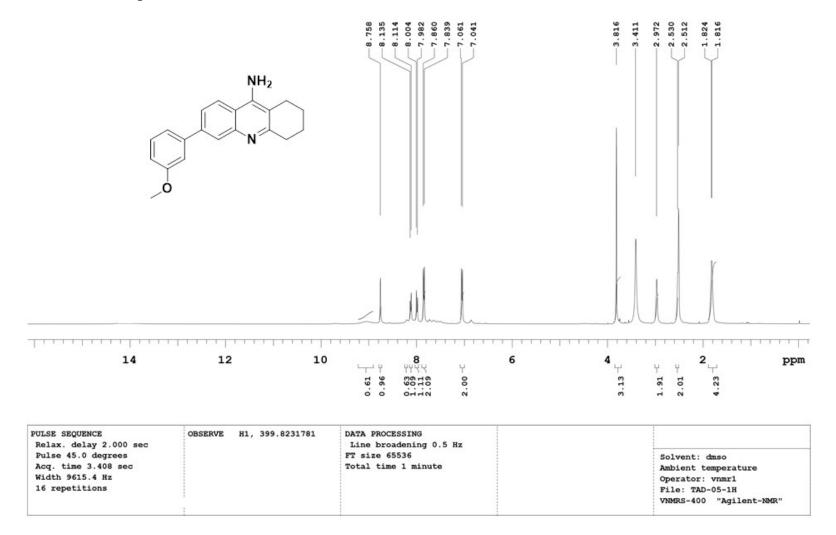

¹H NMR of Compound 7a

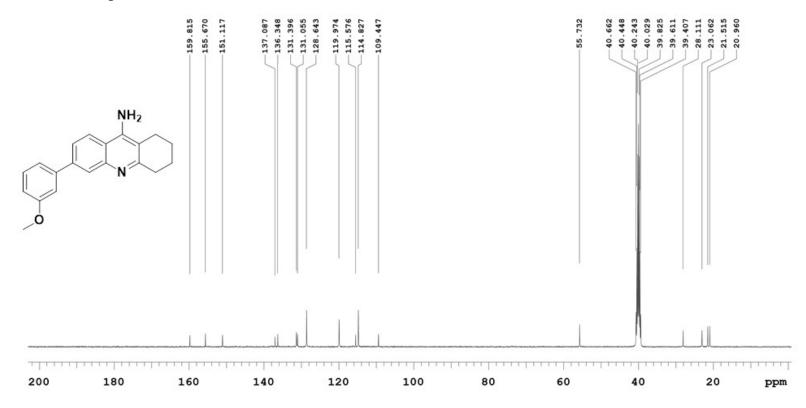


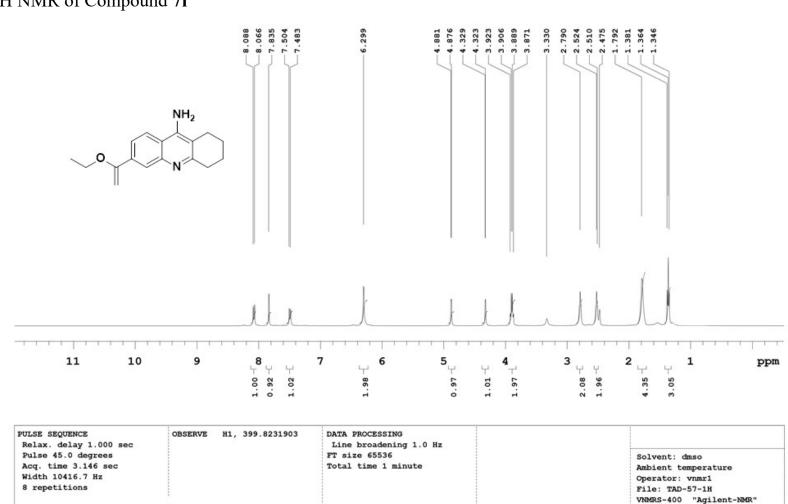


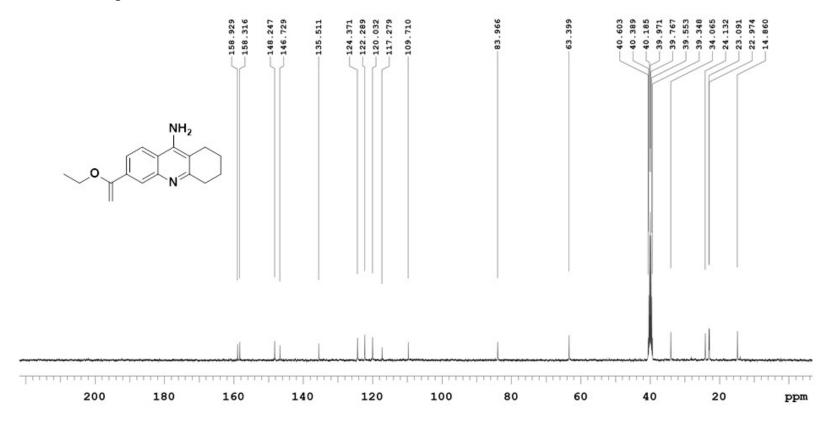

¹H NMR of Compound **7b**



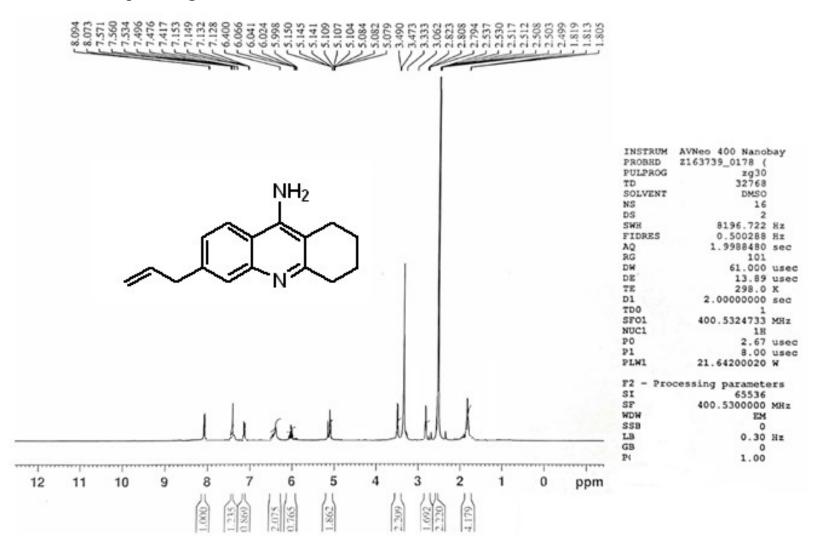

¹H NMR of Compound 7d

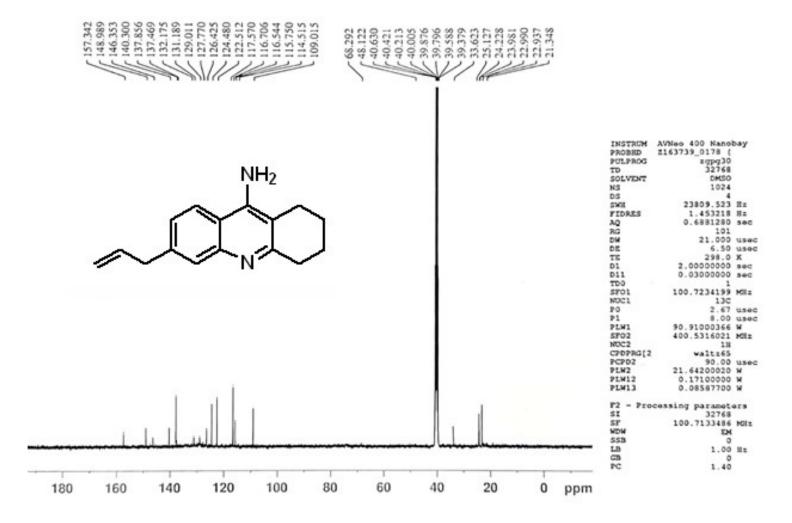

¹³C NMR of Compound **7d**


¹H NMR of Compound 7e

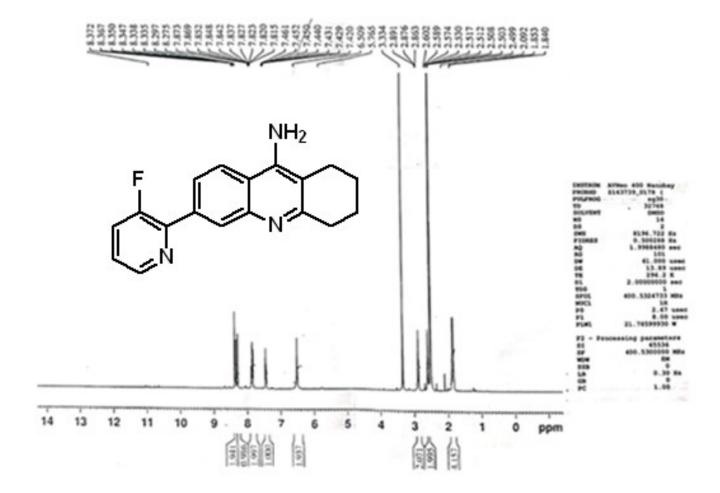


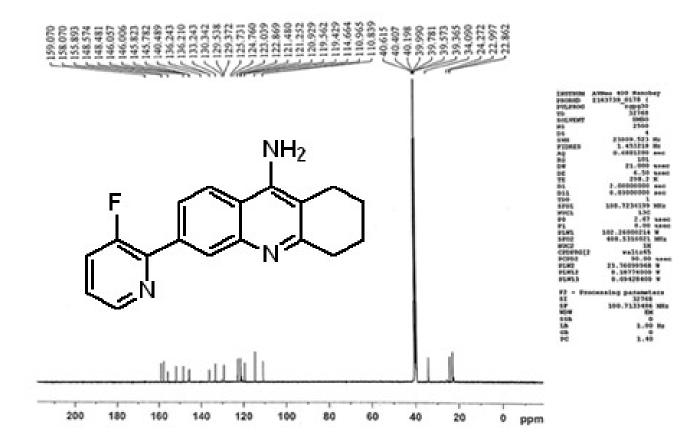
PULSE SEQUENCE	OBSERVE C13, 100.5356212	DATA PROCESSING	-
Relax. delay 1.000 sec	DECOUPLE H1, 399.8251894	Line broadening 2.5 Hz	
Pulse 45.0 degrees Acq. time 1.022 sec Width 32051.3 Hz 2048 repetitions	Power 39 dB continuously on WALTZ-16 modulated	FT size 65536 Total time 69 minutes	Solvent: dmso Ambient temperature Operator: vnmr1 File: TAD-05-13C VNMRS-400 "Agilent-NMR"



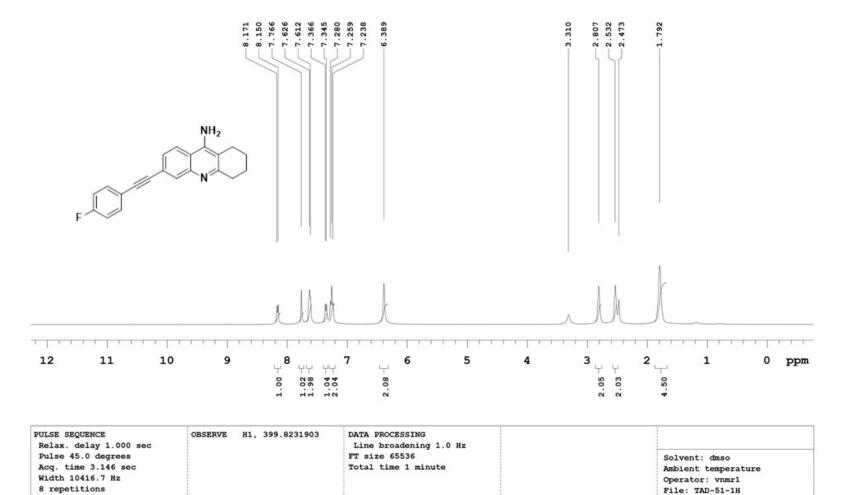


PULSE SEQUENCE	OBSERVE C13, 100.5356212	DATA PROCESSING	
Relax. delay 1.000 sec	DECOUPLE H1, 399.8251894	Line broadening 2.5 Hz	
Pulse 45.0 degrees Acq. time 1.022 sec Width 32051.3 Hz 334 repetitions	Power 39 dB continuously on WALTZ-16 modulated	FT size 65536 Total time 11 minutes	Solvent: dmso Ambient temperature Operator: vnmr1 File: TAD-57-13C VNMRS-400 "Agilent-NMR"

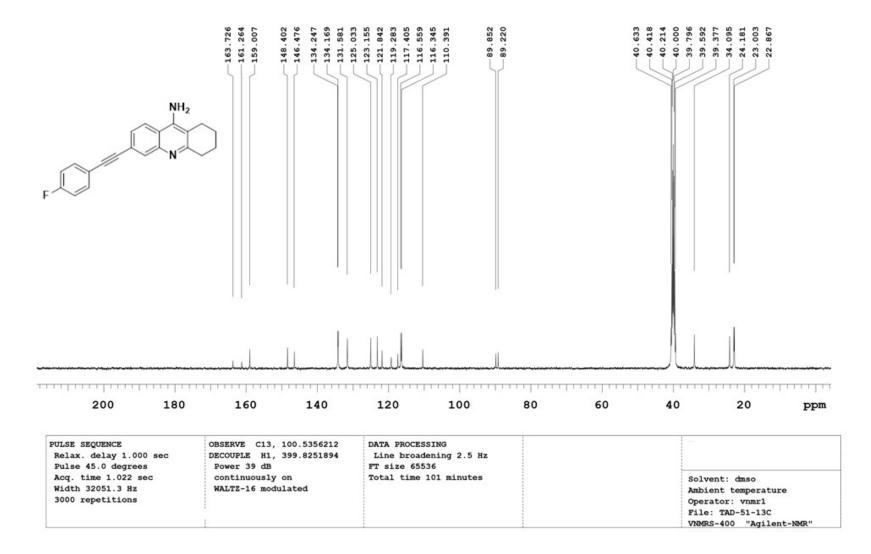

¹H NMR of Compound **7g**



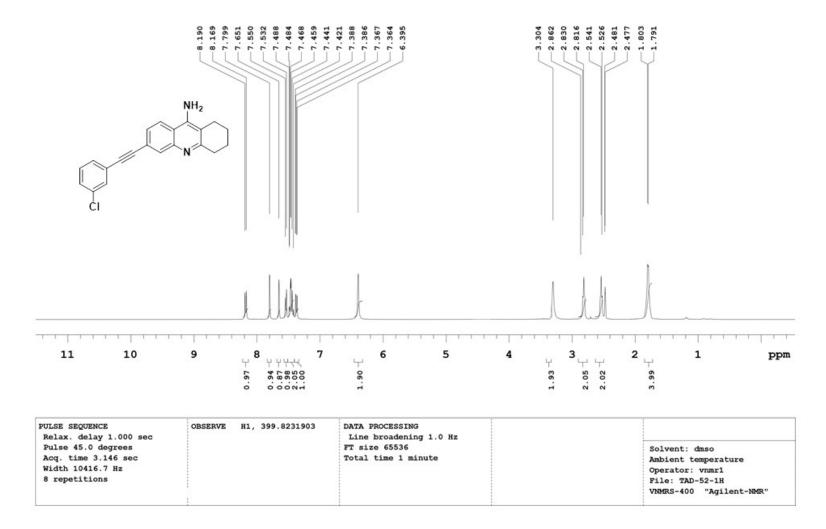
¹³C NMR of Compound **7g**



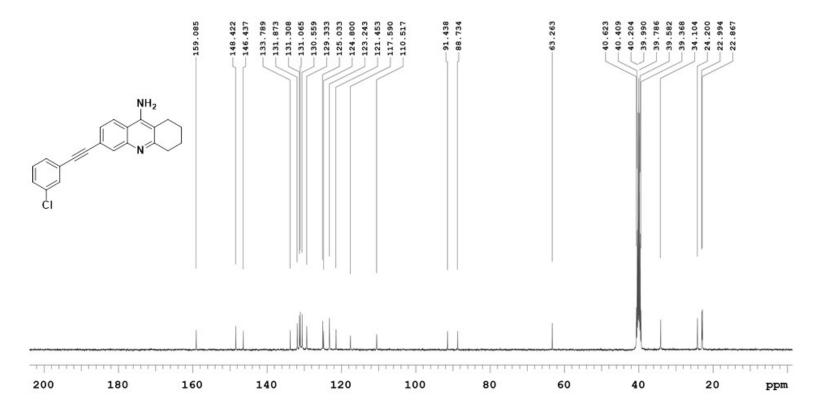
¹H NMR of Compound **7h**



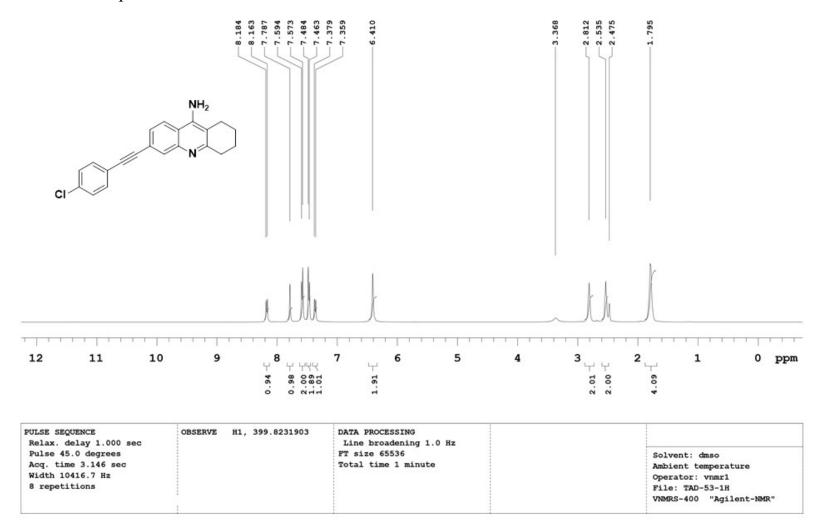
¹H NMR of Compound **9a**



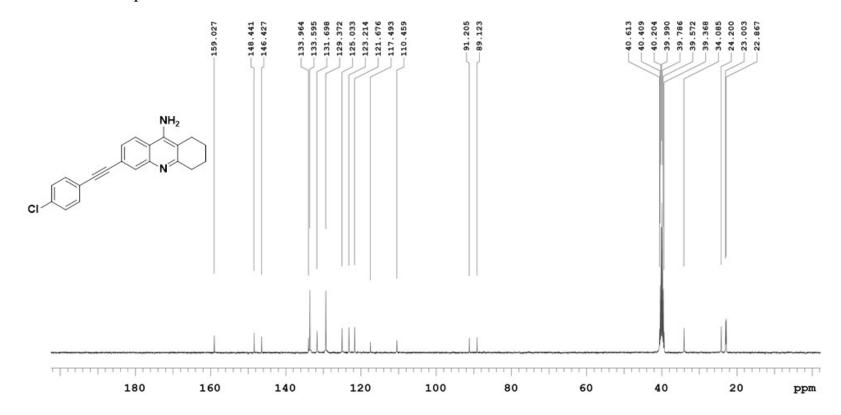
VNMRS-400 "Agilent-NMR"


¹³C NMR of Compound **9a**

¹H NMR of Compound **9b**

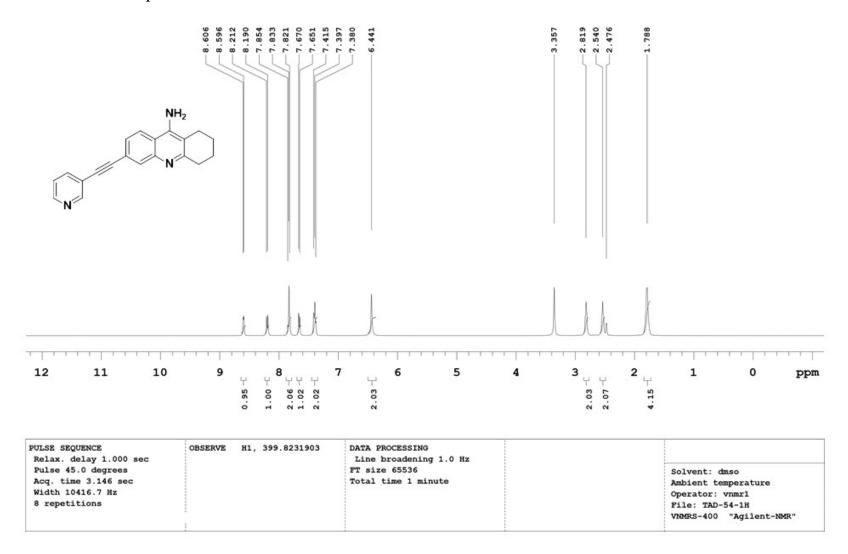


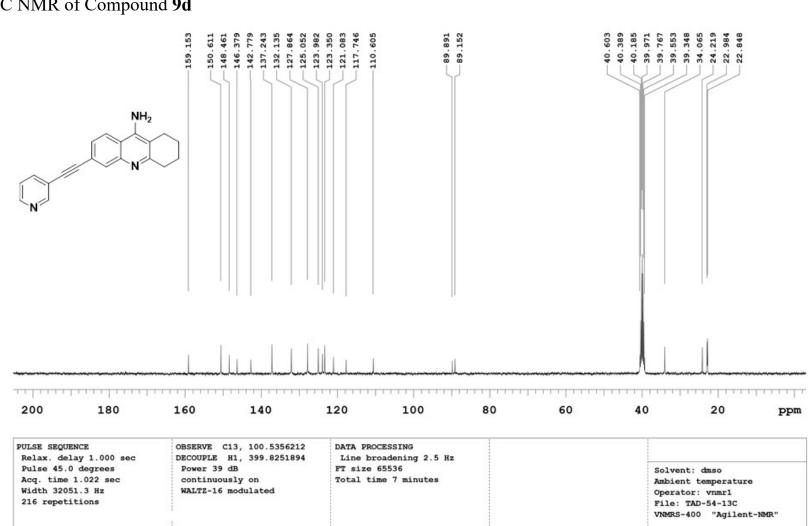
¹³C NMR of Compound **9b**

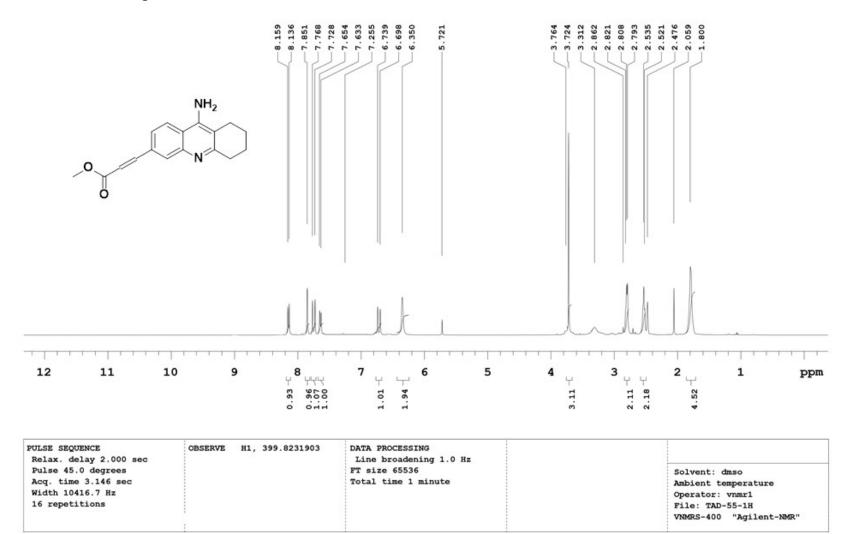


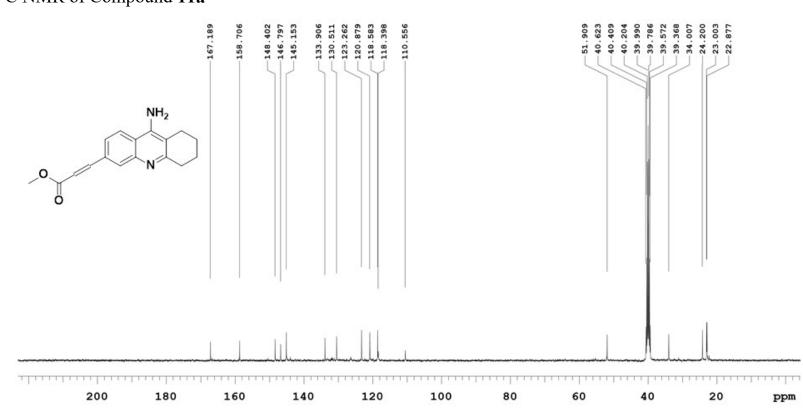
PULSE SEQUENCE	OBSERVE C13, 100.5356212	DATA PROCESSING	
Relax. delay 1.000 sec	DECOUPLE H1, 399.8251894	Line broadening 2.5 Hz	
Acq. time 1.022 sec Width 32051.3 Hz 2048 repetitions	Power 39 dB continuously on WALTZ-16 modulated	FT size 65536 Total time 69 minutes	Solvent: dmso Ambient temperature Operator: vnmr1 File: TAD-52-13C VNMRS-400 "Agilent-NMR"

¹H NMR of Compound **9c**

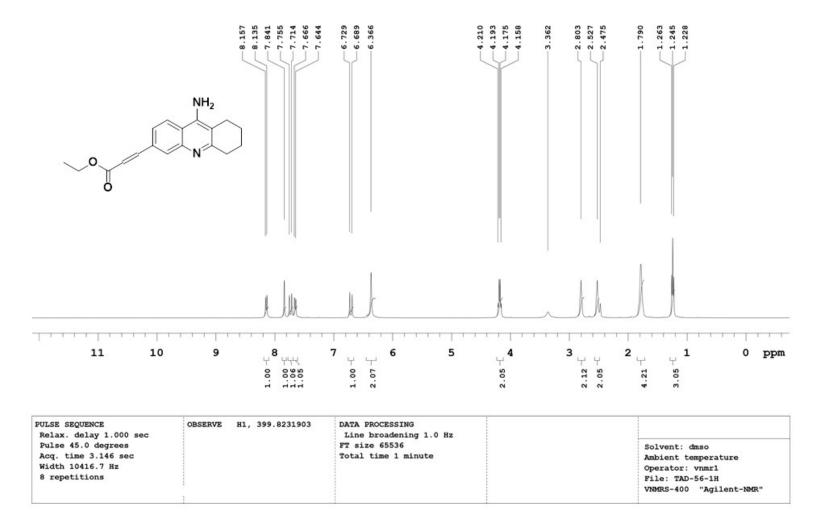


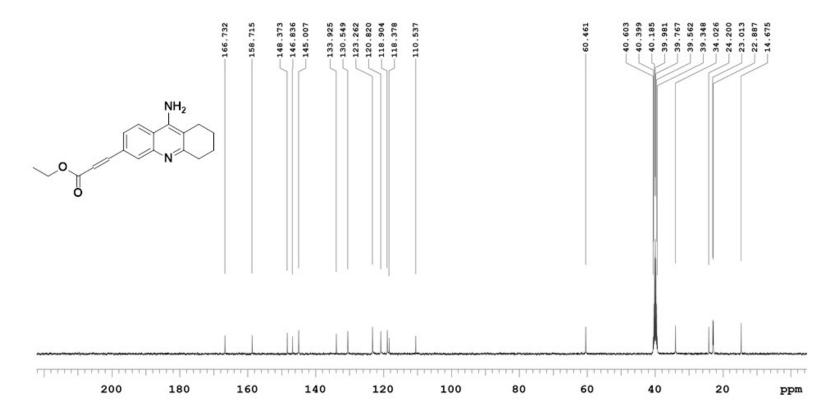

¹³C NMR of Compound **9c**


PULSE SEQUENCE	OBSERVE C13, 100.5356212	DATA PROCESSING	
Relax. delay 1.000 sec	DECOUPLE H1, 399.8251894	Line broadening 2.5 Hz	
Pulse 45.0 degrees Acq. time 1.022 sec Width 32051.3 Hz 854 repetitions	Power 39 dB continuously on WALTZ-16 modulated	FT size 65536 Total time 28 minutes	Solvent: dmso Ambient temperature Operator: vnmr1 File: TAD-53-13C VNMRS-400 "Agilent-NMR"


¹H NMR of Compound **9d**

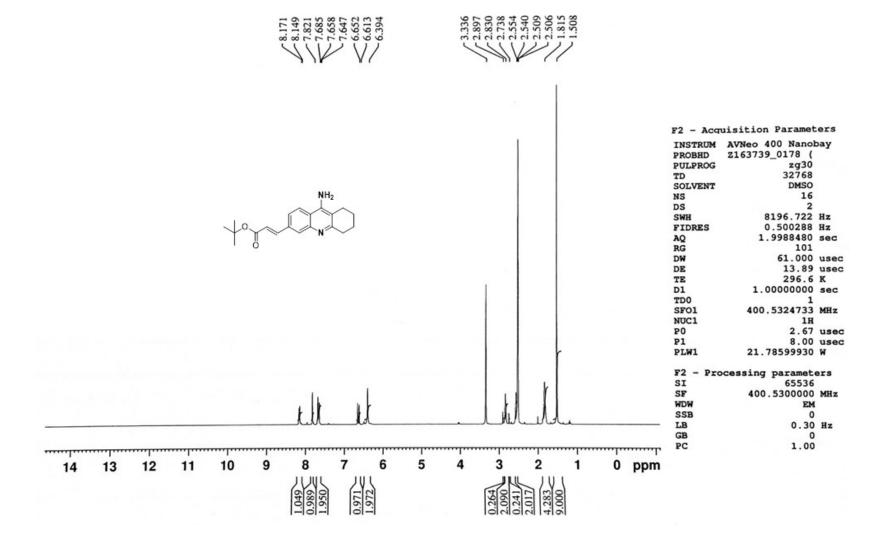
¹H NMR of Compound **11a**



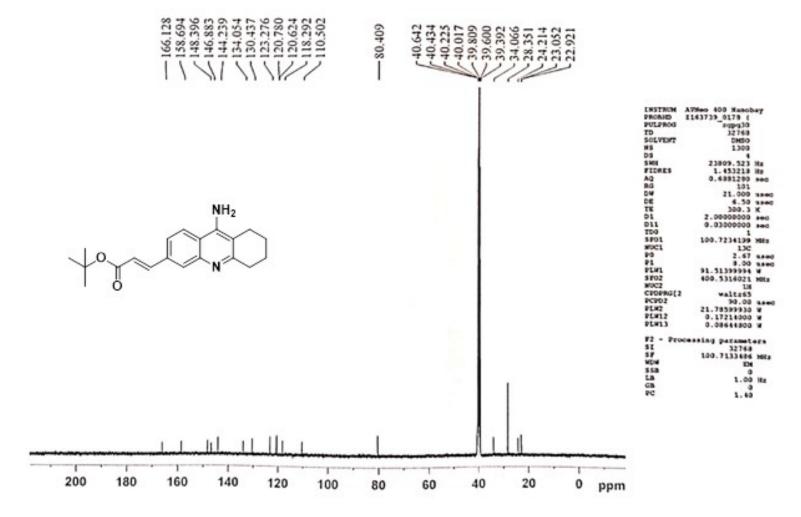

PULSE SEQUENCE	OBSERVE C13, 100.5356212	DATA PROCESSING	
Relax. delay 1.000 sec Pulse 45.0 degrees	DECOUPLE H1, 399.8251894 Power 39 dB	Line broadening 2.5 Hz FT size 65536	
Acq. time 1.022 sec	continuously on	Total time 51 minutes	
Width 32051.3 Hz	WALTZ-16 modulated		Solvent: dmso
1520 repetitions			Ambient temperature
			Operator: vnmr1
			File: TAD-55-13C

¹³C NMR of Compound **11a**

¹H NMR of Compound **11b**

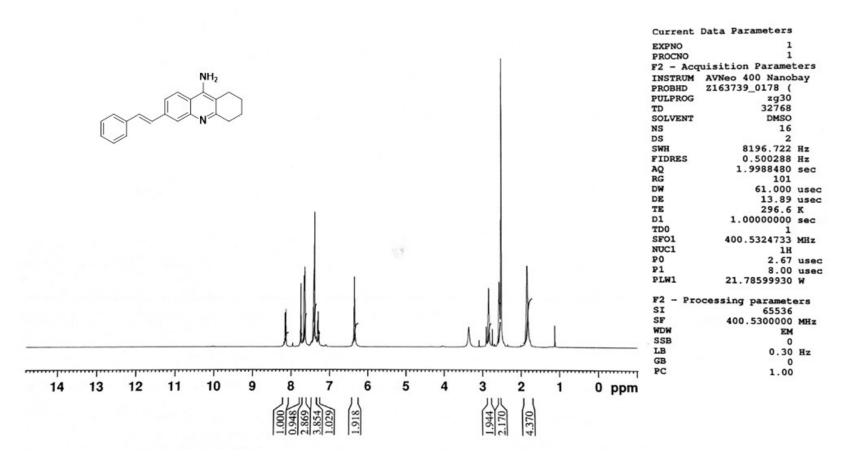


¹³C NMR of Compound **11b**

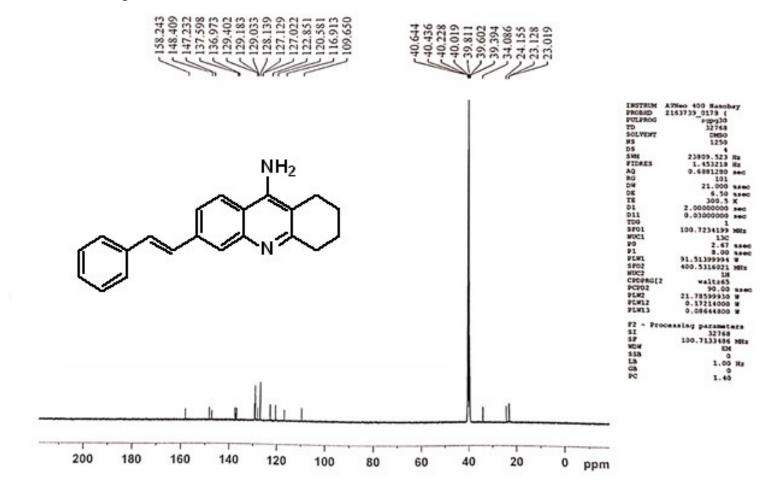


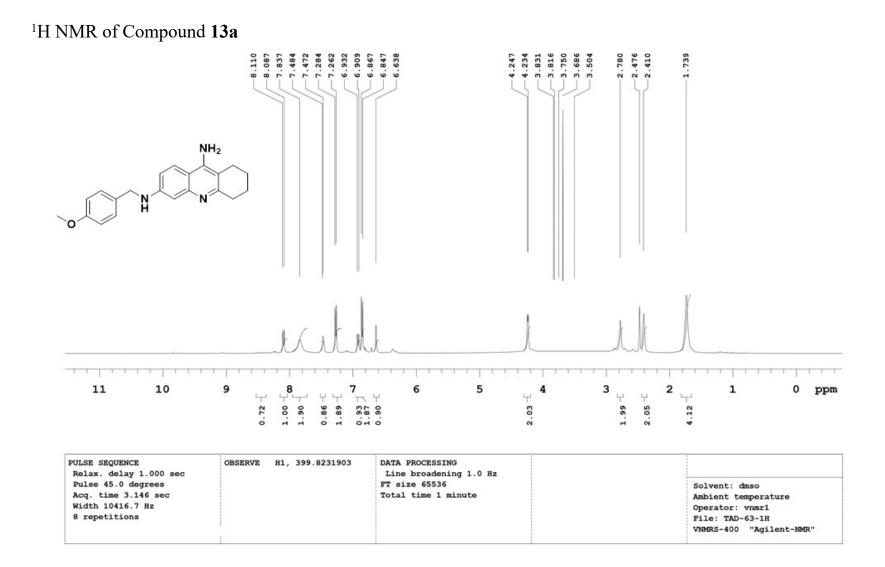
PULSE SEQUENCE	OBSERVE C13, 100.5356212	DATA PROCESSING	
Relax. delay 1.000 sec	DECOUPLE H1, 399.8251894	Line broadening 2.5 Hz	
Pulse 45.0 degrees Acq. time 1.022 sec Width 32051.3 Hz 320 repetitions	Power 39 dB continuously on WALTZ-16 modulated	FT size 65536 Total time 10 minutes	Solvent: dmso Ambient temperature Operator: vnmrl File: TAD-56-13C VNMRS-400 "Agilent-NMR"

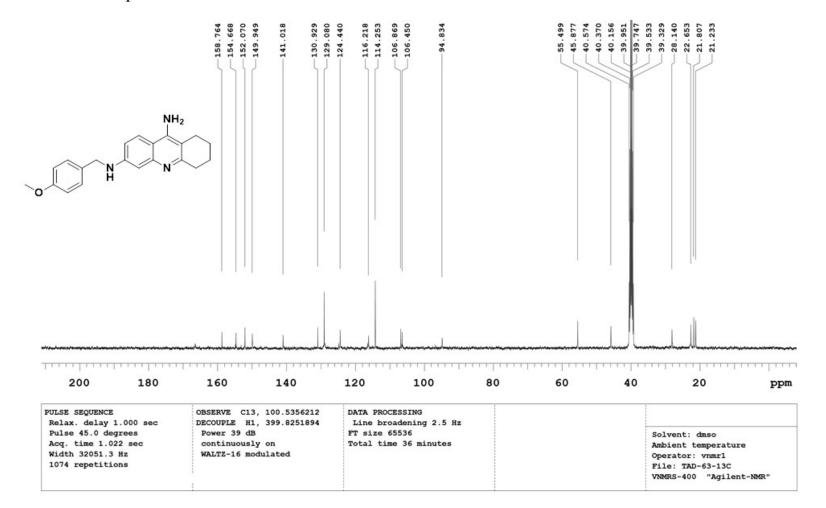
¹H NMR of Compound **11c**



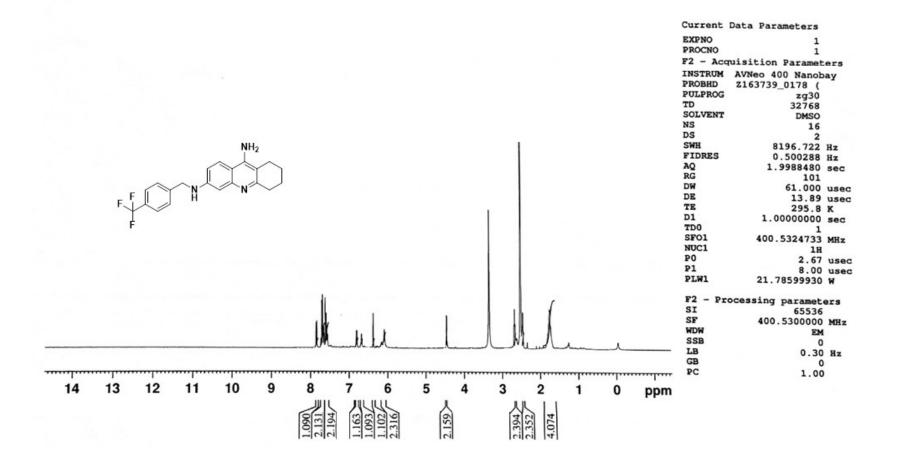
¹³C NMR of Compound **11c**

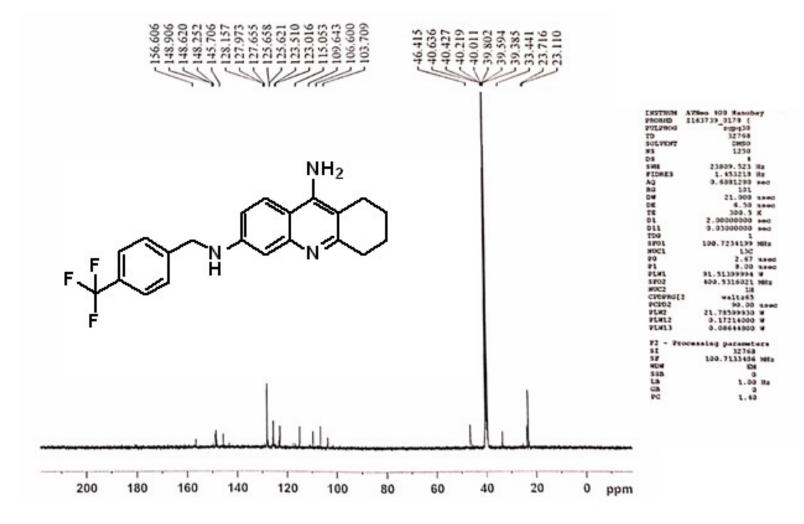


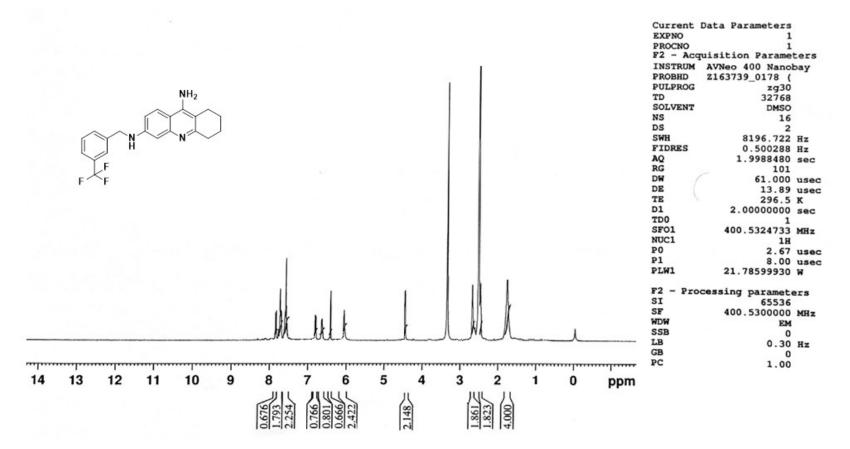

¹H NMR of Compound **11d**

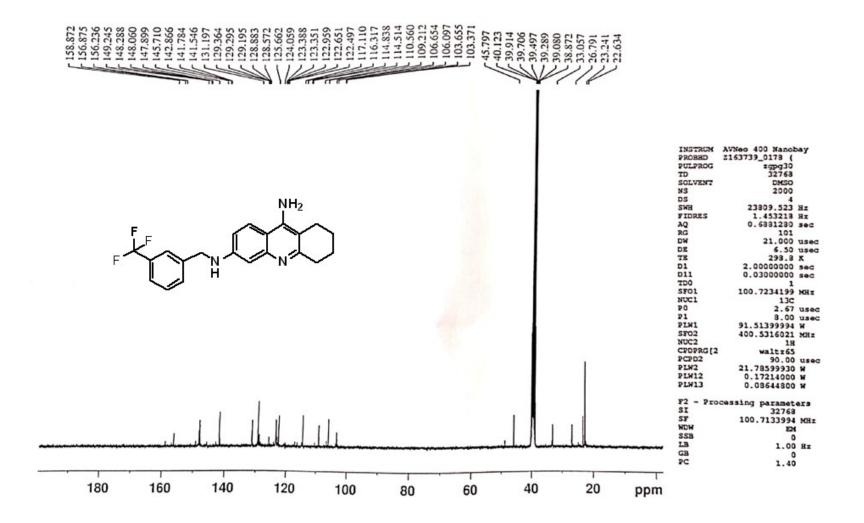


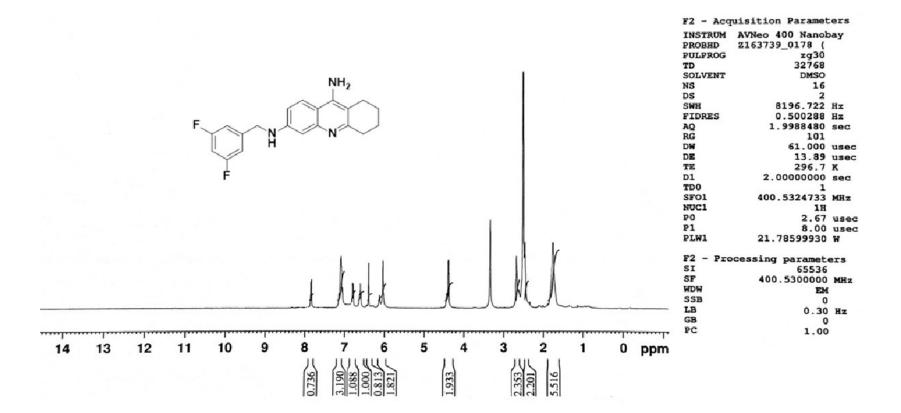
¹³C NMR of Compound **11d**

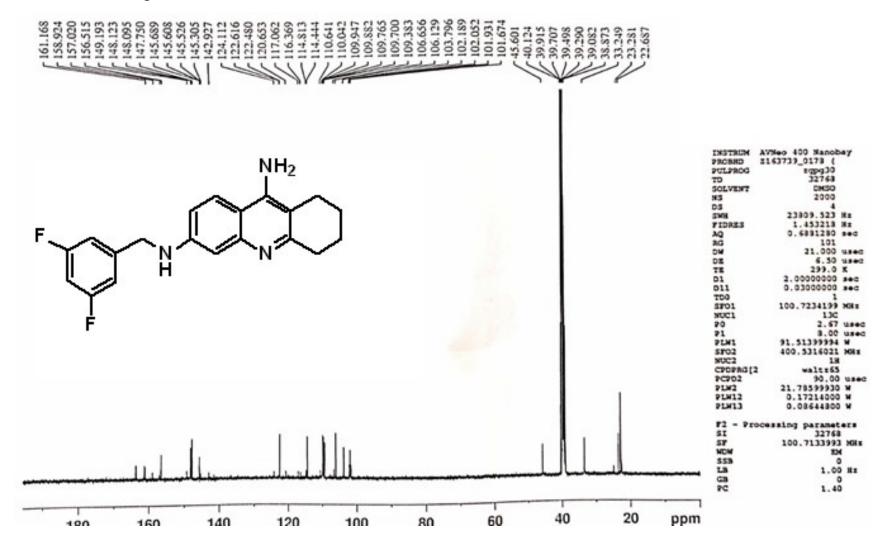


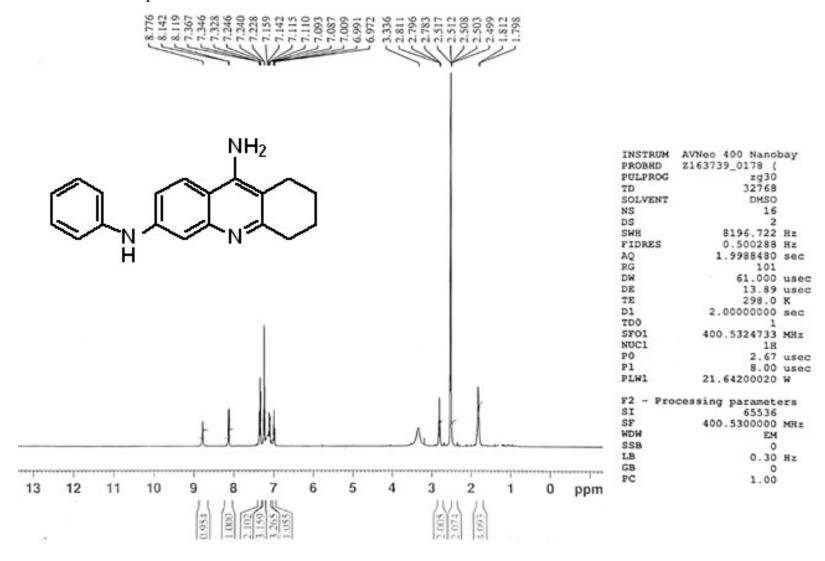

¹³C NMR of Compound **13a**

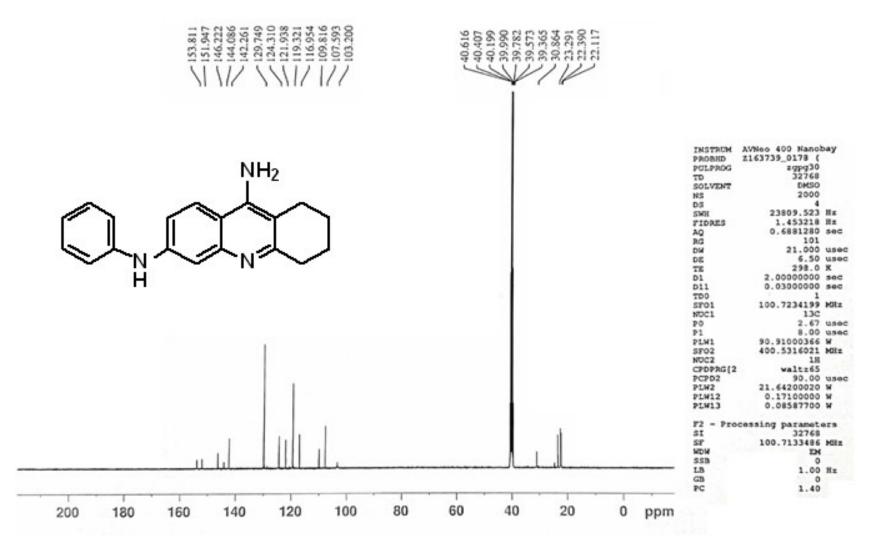

¹H NMR of Compound **13b**

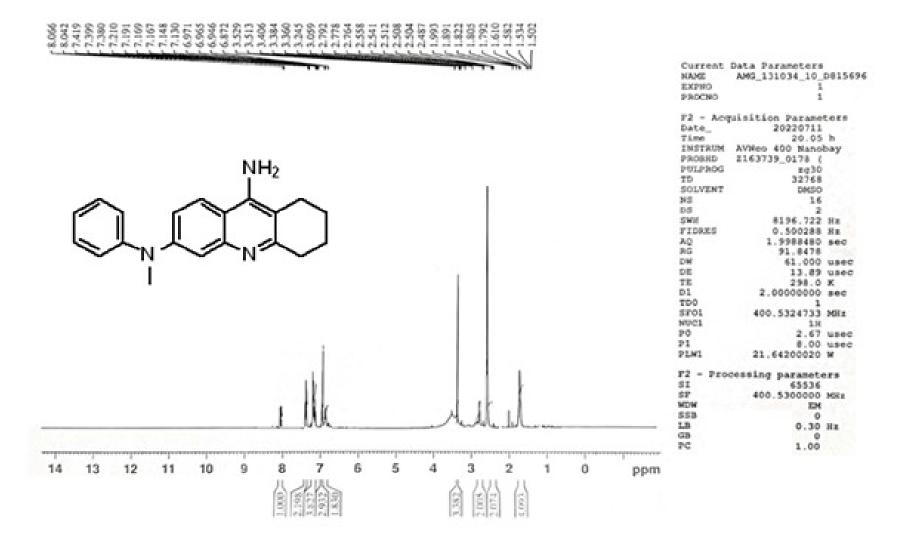

¹³C NMR of Compound **13b**

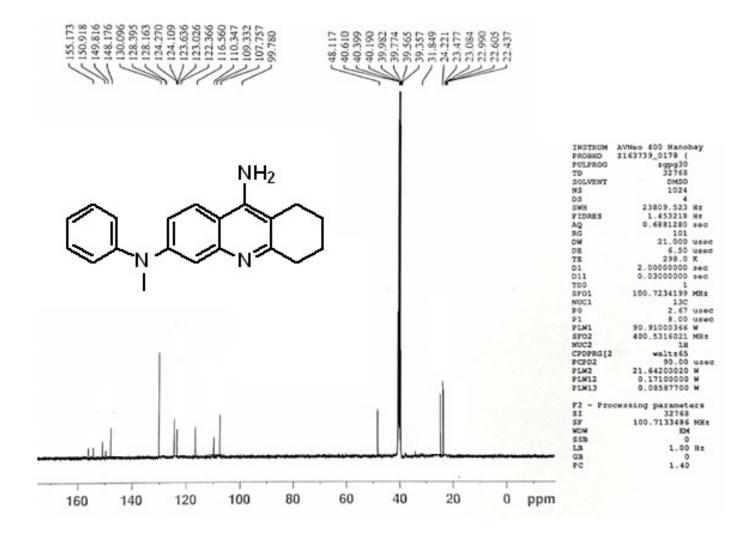

¹H NMR of Compound **13c**


¹³C NMR of Compound **13c**

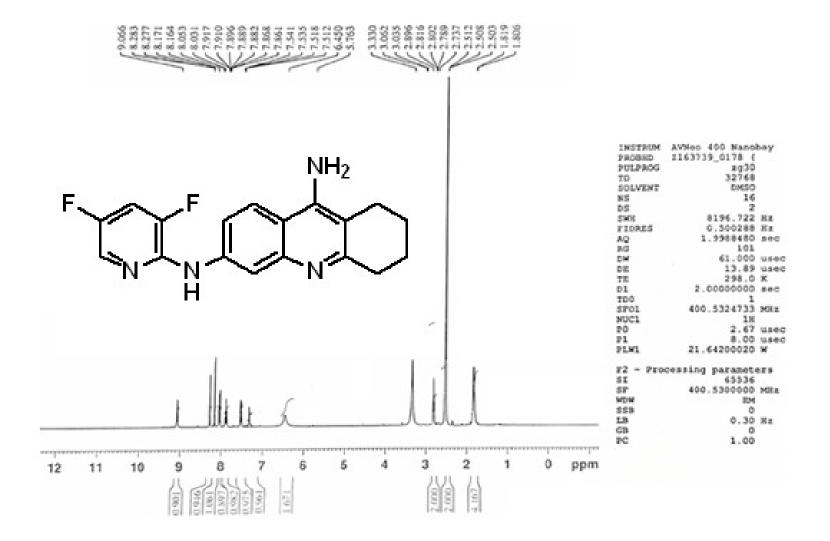

¹H NMR of Compound **13d**

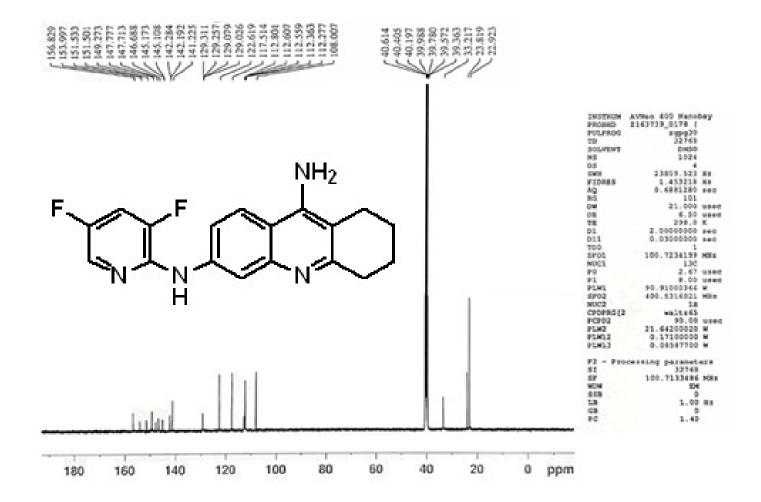

¹³C NMR of Compound **13d**


¹H NMR of Compound **13e**



¹³C NMR of Compound **13**e




¹H NMR of Compound **13f**

¹H NMR of Compound **13g**

