Casiopeinas® with Indomethacin: Synthesis, characterization, DFT studies, antiproliferative activity, and nanoencapsulation

Yokari Godínez-Loyola¹, Jesús Gracia-Mora¹, Iván Darío Rojas-Montoya¹, Luis Felipe Hernández-Ayala¹, Miguel Reina¹, Luis Antonio Ortiz-Frade², Ramón Enrique Robles-Zepeda³, María Josefa Bernad-Bernad^{*1} and Lena Ruiz-Azuara^{*1}

Supporting Information

Index							
Content	Page						
Section S1. [Cu(N-N)(Indo)(H ₂ O)]NO ₃ complexes. Synthesis and	2						
physicochemical characterization.	2						
Figure S1. FT-IR spectra of the coordination compounds.							
Figure S2. APSI(Appearance Potential Soft Ionization) Mass Spectra in methanol							
Table S1. <i>9</i> factor values (isotropic, parallel and perpendicular components), A							
constant coupling (isotropic, parallel and perpendicular components for Cu							
interactions and nitrogen interaction (A_N)							
Figure S3. Experimental and simulated EPR spectra. 3 mmol/L MeOH solutions							
at 77 K.	10-13						
Figure S4. Electronic spectra at different pHs aqua(4,7-dimethyl-1,10-							
phenanthroline)(Indo)copper(II) nitrate (1b) at 37 °C using methanol solutions at	13						
0.001 M.							
Figure S5. Electronic spectra at different times of aqua(4,7-dimethyl-1,10-							
phenanthroline)(Indo)copper(II) nitrate (1b) using methanol solutions at 0.001	14						
M.							
Figure S6. Electronic spectra at different temperatures of the compound aqua(4,7-							
dimethyl-1,10-phenanthroline)(Indo)copper(II) nitrate (1b) using methanol	14						
solutions at 0.001 M.							
Figure S7. Optimized (M06/LanL2DZ) geometries, calculated V_M and E^0 for	15						
[Cu(Indo)(N-N)] ⁺ complexes.	15						
Figure S8. Plot of estimated and calculated redox potential							
Figure S9. Differential calorimetry screening plot for PNIPAAm and nanogel							
(pH=5.0 and 7.4)							
Table S2. Encapsulation experiments data							
Figure S7. Release compound percentage and Peppas-Sahlin model adjustment							

^{*} Corresponding author: <u>bernadf@comunidad.unam.mx</u> and <u>lenar701@gmail.com</u>

S1. Synthesis and physicochemical characterization of $[Cu(N-N)(Indo)(H_2O)]NO_3$

All coordination compounds were synthesized as described in Scheme 1(a), starting from $Cu(NO_3)_2 \cdot 2.5H_2O$, with a ratio 1:1:1 Cu-HIndo-diimine in a MeOH/H₂O at 3:1 ratio solution in the presence of a base .Green powders were obtained after 2 hours of reaction, solvent partial evaporation, and recrystallization with a mix EtOH/diethyl ether.

Aqua(1,10-phenanthroline)(Indo)copper(II) nitrate (1a). Elemental analysis for $[C_{31}H_{23}N_4O_7CuCl(C_4H_{10})_{2.5}]$ (MW = 847.58 g/mol); calculated: %C 56.86, %N 8.03, %H 3.90; founded: %C 56.49, %N 8.45, %H 3.49. Yield 0.78 g (78 %). APSI-MS in methanol: 620.1013, found X 620.925 [M⁺]. FTIR v/cm⁻¹: 2928 v(CH₃), 1429 δ(CH₃), 1673 v_{asym}(C=O), 1589 y 1520 v(C=N/C=C), 1217 v(C-O), 849 and 721 δ(C-H out of the plane), 1385 v(NO₃) and 3392 v(O-H). μ_{eff} = 1.66 MB. Π_M = 91.3 Ohm⁻¹ cm² mol⁻¹. UV-Vis(MeOH): λ_{max} nm (ε M⁻¹ cm⁻¹): 222 (9035), 272 (6404), 298 (3010), 653 (22), 758 (15).

Aqua(4,7-*dimethyl*-1,10-*phenanthroline*)(*Indo*)*copper*(*II*) *nitrate* (1*b*). Elemental analysis for the green powder $[C_{33}H_{29}N_4O_8ClCu(H_2O)_{0.5}]$ (717.60 g/mol); calculated: %C 55.23, %N 7.80, %H 4.21; found: %C 55.23, %N 8.07, %H 3.92. Yield 0.74 g (76 %). APSI-MS in methanol: 669.1068, found 669.1045, $[M^+]$. FTIR v/cm⁻¹: 2926 v(CH₃), 1425 δ(CH₃), 1622 ν_{asym} (C=O), 1564 and 1524 v(C=N/C=C), 1215 v(C-O), 868 and 723 δ(C-H out of the plane), 1383 v(NO₃) and 3400 v(O-H). $\mu_{eff} = 2.21$ MB. $J_M = 105.9$ Ohm⁻¹ cm² mol⁻¹. UV-Vis(MeOH): λ_{max} nm (ε M⁻¹ cm⁻¹): 234 (9837), 272 (12364), 295 (4209), 633 (28) and 754 (14).

Aqua(5,6-*dimethyl*-1,10-*phenanthroline*)(*Indo*)*copper*(*II*) *nitrate* (1*c*). Elemental analysis for the green powder $[C_{33}H_{27}N_4O_7ClCu(H_2O)_{0.5}]$ (699.58 g/mol); calculated: %C 56.65, %N 8.00, %H 4.03; found: %C 56.49, %N 8.40, %H 3.97. Yield 0.65 g (67 %). APSI-MS in methanol: 647.124824, found 647.1244 [M⁺]. FTIR v/cm⁻¹: 2943 v(CH₃), 1433 δ(CH₃), 1606 v_{asym} (C=O), 1587 and 1524 v(C=N/C=C), 1215 v(C-O), 812 and 727 δ(C-H out of the plane), 1385 v(NO₃) and 3394 v(O-H). μ_{eff} = 1.98 MB. J_{M} = 93.1 Ohm⁻¹ cm² mol⁻¹. UV-Vis(MeOH): λ_{max} nm (ε M⁻¹ cm⁻¹): 235 (9439), 280 (11285), 301 (4545), 643 (36) and 763 (29).

2

Aqua(3,4,7,8-*tetramethyl*-1,10-*phenanthroline*)(*Indo*)*copper*(*II*) *nitrate* (1*d*). Elemental analysis for the green powder $[C_{35}H_{37}N_4O_{10}ClCu(H_2O)_2]$ (772.68 g/mol); calculated: %C 54.40, %N 7.55, %H 4.82; found: %C 54.38, %N 7.55, %H 4.54. Yield 0.48 g (49 %). APSI-MS in methanol: 657.1456 , found 657.1431, $[M^+]$. FTIR v/cm⁻¹: 2926 v(CH₃), 1431 δ(CH₃), 1618 v(C=O), 1593 and 1531 v(C=N/C=C), 1217 v(C-O), 835 and 721 δ(C-H out of the plane), 1385 v(NO₃) and 3417 v(O-H). μ_{eff} = 1.96 MB. Π_M = 89.5 Ohm⁻¹ cm² mol⁻¹. UV-Vis(MeOH): λ_{max} nm (ε M⁻¹ cm⁻¹): 234 (9924), 278 (11420), 302 (4446), 632 (51) and 756 (25).

Aqua(2,2'-bipyridine)(Indo)copper(II) nitrate (2a). A green solid was obtained after solvent evaporation and recrystallization on EtOH/diethyl ether. Elemental analysis for $[C_{29}H_{25}N_4O_8ClCu(H_2O)_{1.5}]$ (683.54 g/mol); calculated: %C 50.95, %N 8.19, %H 4.12; found: %C 50.48, %N 8.36, %H 4.00. Yield 0.89 g (88 %). APSI-MS in methanol: 579.0986, found 579.0235X [M⁺]. FTIR v/cm⁻¹: 2939 v(CH₃), 1446 δ(CH₃), 1603 v_{asym}(C=O), 1579 and 1564 v(C=N/C=C), 1215 v(C-O), 769 cm⁻¹ δ(C-H out of the plane), 1385 v(NO₃) and 3406 v(O-H). μ_{eff} = 2.20 MB. Π_M = 102.9 Ohm⁻¹ cm² mol⁻¹. UV-Vis(MeOH): λ_{max} nm (ε M⁻¹ cm⁻¹): 236 (7787), 297 (7233), 308 (5882), 638 (33) and 768 (ε 17).

Aqua(4,4'-dimethyl-2,2'-bipyridine)(Indo)copper(II) nitrate (2b). Elemental analysis for green powder [C₃₁H₂₇N₄O₇CuCl(0.5C₄H₁₀O)] (709.63 g/mol), calculated: %C 56.32, %N 7.96, %H 4.58; found: %C 56.51, %N 7.96, %H 4.31. Yield 0.72 g (72 %). APSI-MS in methanol: 607.1299, found 607.1290X, [M⁺]. FTIR v/cm⁻¹: 2928 v(CH₃), 1477 δ(CH₃), 1616 ν_{asym} (C=O), 1597 and 1570 v(C=N/C=C), 1225 v(C-O), 754 δ(C-H out of the plane), 1385 v(NO₃) and 3431 v(O-H). μ_{eff} = 1.78 MB. Π_{M} = 90.5 Ohm⁻¹ cm² mol⁻¹. UV-Vis(MeOH): λ_{max} nm (ε M⁻¹ cm⁻¹): 236 (9924), 294 (6289), 305 (5872), 633 (35) and 763 (18).

Aqua(5,5'-*dimethyl*-2,2'-*bipyridine*)(*Indo*)*copper*(*II*) *nitrate* (2*c*). Elemental analysis for green powder $[C_{31}H_{29}N_4O_8CuCl(H_2O)_2]$ (720.61 g/mol); calculated: %C 51.66, %N 7.77, %H 4.54; found: %C 51.61, %N 8.07, %H 4.54. Yield 0.76 g (75 %). APSI-MS in methanol: 607.1299, found 607.1230 [M⁺]. FTIR v/cm⁻¹: 2924 v(CH₃), 1481 δ(CH₃), 16160 v_{asym}(C=O),

1591and 1568 v(C=N/C=C), 1217 v(C-O), 727 δ(C-H out of the plane), 1385 v(NO₃) and 3396 v(O-H). μ_{eff} = 1.92 MB. Π_M = 90.5 Ohm⁻¹ cm² mol⁻¹. UV-Vis(MeOH): λ_{max} nm (ε M⁻¹ cm⁻¹): 235 (9931), 307 (8377), 319 (6586), 656 (45) and 788 (24).

Aqua(4,7-dimethyl-1,10-phenanthroline)(Indo)copper(II) nitrate (1b).

Aqua(5,6-dimethyl-1,10-phenanthroline)(Indo)copper(II) nitrate (1c).

Aqua(3,4,7,8-tetramethyl-1,10-phenanthroline)(Indo)copper(II) nitrate (1d).

Aqua(2,2'-bipyridine)(Indo)copper(II) nitrate (2a).

Aqua(4,4'-dimethyl-2,2'-bipyridine)(Indo)copper(II) nitrate (2b).

Aqua(5,5'-dimethyl-2,2'-bipyridine)(Indo)copper(II) nitrate (2c).

Figure S1. FT-IR spectra of the coordination compounds. All spectra were recorded on KBr disks in a Nexus Thermo Nicolet spectrophotometer in the range 4000 - 400 cm⁻¹.

Aqua(1,10-phenanthroline)(Indo)copper(II)nitrate (1a). C₃₁H₂₃N₄O₇Cu: 661.055, found 661.122 [M⁺].

 $C_{33}H_{27}N_3O_4CuCl(H_2O){:}\ 684.073,\ found\ 684.193\ [M^+].$

 $Aqua(5,6-dimethyl-1,10-phenanthroline)(Indo)copper(II) \quad nitrate \quad (1c). \quad C_{33}H_{28}N_3O_4Cu: 651.096, found 651.136 [M⁺].$

Aqua(2,2'-bipyridine)(Indo)copper(II) nitrate (2a). C₂₉H₂₅N₃O₄Cu: 577.083, found 577.121 [M⁺].

Aqua(4,4'-dimethyl-2,2'-bipyridine)(Indo)copper(II) nitrate (2b). APSI-MS in methanol, $C_{31}H_{27}N_3O_4Cu$: 603.099, found 603.521 [M⁺].

m/z

 $Aqua(5,5'-dimethyl-2,2'-bipyridine)(Indo)copper(II) \quad nitrate \quad (2c). \qquad C_{31}H_{29}N_4O_7CuCl: \\ 667.102, found 607.149[M^+].$

Figure S2. APSI(Appearance Potential Soft Ionization) Mass Spectra in methanol

coupling (isotropic, parallel and perpendicular components for Cu interactions and									
nitrogen interaction (A_N) .									
Compound	$g_{\ //}$	g $_{\perp}$	$A_{//}$ (a)	$A_{\perp}^{(a)}$	g_{iso}	$A_{iso}^{(a)}$	A_N (a)	$f^{(b)}$	
la	2.276	2.057	180.852	14.405	2.130	66.361	0.0014	126	
1b	2.270	2.057	182.558	13.757	2.128	66.534	0.0014	124	
1c	2.270	2.057	180.428	14.232	2.128	66.196	0.0013	126	
1d	2.258	2.054	189.689	15.957	2.122	70.411	0.0013	119	
2a	2.265	2.056	185.593	15.896	2.126	69.015	0.0013	122	
2b	2.274	2.056	181.808	14.916	2.129	67.025	0.0007	125	
2c	2.262	2.055	188.970	16.310	2.124	70.386	0.0013	120	

Table S1. *9* factor values (isotropic, parallel and perpendicular components), A constant coupling (isotropic, parallel and perpendicular components for Cu interactions and

Aqua(1,10-phenanthroline)(Indo)copper(II)nitrate (1a).

Aqua(4,7-dimethyl-1,10-phenanthroline)(Indo)copper(II) nitrate (1b).

Aqua(5,6-dimethyl-1,10-phenanthroline)(Indo)copper(II) nitrate (1c).

Aqua(3,4,7,8-tetramethyl-1,10-phenanthroline)(Indo)copper(II) nitrate (1d).

Aqua(2,2'-bipyridine)(Indo)copper(II) nitrate (2a).

Aqua(4,4'-dimethyl-2,2'-bipyridine)(Indo)copper(II) nitrate (2b).

Aqua(5,5'-dimethyl-2,2'-bipyridine)(Indo)copper(II) nitrate (2c).

Figure S3. Experimental and simulated EPR spectra. 3 mmol/L MeOH solutions at 77 K.

Figure S4. Electronic spectra at different pHs aqua(4,7-dimethyl-1,10phenanthroline)(Indo)copper(II) nitrate (1b) at 37 °C using methanol solutions at 0.001 M.

Figure S5. Electronic spectra at different times of aqua(4,7-dimethyl-1,10-phenanthroline)(Indo)copper(II) nitrate (1b) using methanol solutions at 0.001 M.

Figure S6. Electronic spectra at different temperatures of the compound aqua(4,7-dimethyl-1,10-phenanthroline)(Indo)copper(II) nitrate (1b) using methanol solutions at 0.001 M.

Figure S7. Optimized (M06/LanL2DZ) geometries, calculated V_M and E⁰ for

Figure S8. Plot of estimated and calculated redox potential

Figure S9. Differential calorimetry screening plot for PNIPAAm and nanogel (pH= 5.0 and 7.4)

Table S2. Encapsulation experiments data								
Test	Nanogel mass (mg)	Initial Free 0/2		0/2	Mass			
		concentration	concentration	Encanculation	complex/nanogel			
		(mg/mL)	(mg/mL)	Elicapsulation	ratio			
А	20.2	1.425	0.4437	68.87	0.0486			
В	19.9	1.425	0.4537	68.18	0.0488			
С	19.9	1.425	0.4143	70.92	0.0508			
D	20.0	1.425	0.4150	70.87	0.0505			
Е	19.8	1.425	0.4601	67.71	0.0487			
F	19.8	1.425	0.4236	70.72	0.503			

Figure S10. Release compound percentage and Peppas-Sahlin model adjustment