Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Materials

Effective array of amines on the transfection efficiency of cationic peptidomimetic lipid molecules into neural cells

Xiang Yu, Hai Xiao, Muqier Muqier, Shuqin Han*, Huricha Baigude*

Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, P.R. China

*Correspondence to: Prof. Huricha Baigude (hbaigude@imu.edu.cn): Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, 010020 and P.R. China. Tel.: +86 471 4992511; fax: +86 471 4992511

Synthesis of N3 lipid:

Step 1: Lysine methyl ester hydrochloride (700 mg, 2.7 mmol), 2-(Boc-amino) ethyl bromide (783 mg, 3.5 mmol) and K₂CO₃(1.8 g, 13.4 mmol) were dissolved in DMF (2 mL), and the mixture was stirred at 60°C for 6 h, followed by washing with 5% citric acid, distilled water, brine, and dried on anhydrous Na₂SO₄, concentrated, and purified by silica gel chromatography using dichloromethane and methanol (10:1) as eluent. The compound 1 was obtained as oil in 74% yield. ¹H NMR (DMSO-d6, ppm) (Figure S1): 1.3-1.6 (m, 24H, -CH₂-, -NHCOOC(CH₃)₃); 2.4 (m, 2H, -NHCH₂-); 2.8-3.1 (m, 5H, -COCH(NH)-, -CH₂NHCOO-); 3.2 (m, 1H, -NH-); 3.6 (s, 3H, -CH₃). HRMS (ESI+) (Figure S2): 404.2751 [M + H]⁺. (Calcd for C₁₉H₃₇N₃O₆, 403.2682).

Step 2: The compound 1 was dissolved in 1,4-dioxane (2 mL) in an ice bath, 1 M NaOH (5 mL) and di-tert-butyl dicarbonate (685 mL, 2.98 mmol) reagents were added, and reaction continued for 24 h at room temperature. Then, the mixture was washed with 5% citric acid, distilled water, brine, and dried on anhydrous Na₂SO₄. The organic layer was concentrated and purified by silica gel chromatography using dichloromethane and methanol (20:1) as eluent. The compound 2 was obtained as oil in 86% yield. ¹H NMR (DMSO-d6, ppm) (Figure S3): 1.3-1.6 (m, 33H, -CH₂-, -NHCOOC(CH₃)₃); 1.7-1.8 (t, 2H, -N(COO)CH₂-); 2.8-3.1 (m, 5H, -CH₂NH-, -COCH-); 3.6 (s, 3H, -CH₃); 6.7 (t, 2H, -NHCOOC(CH₃)₃). HRMS (ESI+) (Figure S4): 526.2771 [M + Na]⁺. (Calcd for C₂₄H₄₅N₃O₈, 503.3207).

Step 3: The compound 2 was dissolved in a mixture of MeOH/NaOH. After vigorously stirring at room temperature for 3 h, the mixture was neutralized by 1 M HCl and the solvents were evaporated, then washed twice with distilled water, saturated brine, dried on anhydrous Na₂SO₄ and concentrated to afford compound 3 as white powder in 61% yield. ¹H NMR (DMSO-d6, ppm) (Figure S5): 1.3-1.5 (m, 33H, -CH₂-, -NHCOOC(CH₃)₃); 1.7-1.8 (t, 2H, -NHCH₂-); 2.8-3.1 (m, 5H, -NHCH₂-, -OCOCH(NH)CH₂-); 6.7 (t, 2H, -NHCOOC(CH₃)₃); 12.6 (s, 1H, -COOH).

Step 4: DoGo1⁴¹ (972.7 mg, 1.50 mmol) and compound 3 (452.4 mg, 1.37 mmol) were dissolved in dichloromethane (2.6 mL). After triethylamine (247 µL, 1.78 mmol) and EDCI (341.4 mg, 1.78 mmol) reagents were added, the reaction was performed under nitrogen atmosphere at room temperature for 24 h. The reaction solution was washed with 5% citric acid, distilled water, brine, and dried on anhydrous Na₂SO₄. The organic layer was concentrated and purified by silica gel chromatography using dichloromethane and methanol (15:1) as eluent. The N3 was obtained as oil after the evaporation of the purified solution into dryness. The yield was 59%. N3 was dissolved in hydrogen chloride-1,4-dioxane and the solution was vigorously stirred in an ice bath for 30 min to give N3 lipid as oil. ¹H NMR (DMSO-d6, ppm) of protected N3 (Figure S6): 0.8-0.9 (t, 6H, -CH₃); 1.1-1.4 83H, -CH₂-, -NHCOOC(CH₃)₃); 1.5-1.84H, (m, NHCOCH₂CH₂CH(NH₂)-); 2.0 (m, 8H, -CH₂CH=CHCH₂-); 3.0-3.2 (m, 8H, -CH₂NHCO-, -CH₂NHCOO(CH₃)₃); 4.3 (m, 2H, -COCH(NH)CH₂-); 5.4 (m, 4H, -CH=CH-); 6.7 (m, 2H, -NHCOOC(CH₃)₃); 7.8 (t, 2H, -CONH-). ¹³C NMR (DMSO-d6, ppm) of N3 (Figure S7): 14.0 (q, 2C, -CH₃); 27.7 (t, 5C, -CH₂CH=CHCH₂-, -CH₂CH(NH)CO-); 32.4 (t, 1C, -COCH₂-); 39.2 (t, 2C, -CH₂NHCO-); 42.0 (t, 2C, -CH₂NH₂); 52.0 (t, 1C, -NHCH₂-); 61.0 (d,1C, -CH(NH)CO-); 73.0 (d, 1C, -COCH(NH)-); 130.0 (d, 4C, -CH=CH-);172.0 (s, 2C, -CO-). HRMS (ESI+) of N3 (Figure S8): [M + Na]+: 817.7557. (Calcd for $C_{64}H_{120}N_6O_9$, 816.7544).

Synthesis of N4 lipid:

Step 1: Lysine methyl ester hydrochloride (300 mg, 1.0 mmol) and Alloc-OSu (171.9 μL, 1.11 mmol) were dissolved in dichloromethane (2. mL), and then triethylamine (350 mL, 2.52 mmol) reagent was added, followed by stirring at room temperature under nitrogen atmosphere for 24 h. After the completion of the reaction, the mixture was washed with 5% citric acid, distilled water, saturated brine and dried on anhydrous Na₂SO₄. The organic layer was concentrated and purified by silica gel chromatography using dichloromethane

and methanol (15:1) as eluent. The compound 4 was obtained as oil with the yield of 65%. HRMS (ESI+): $[M + Na]^+$ (Figure S9): 368.1895. (Calcd for $C_{16}H_{28}N_2O_6$, 344.1947).

Step 2: The compound 4 was dissolved in a mixture of MeOH/NaOH. After vigorously stirring at room temperature for 3 h, the mixture was neutralized by 1 M HCl and the solvents were evaporated, then washed twice with distilled water, saturated brine, dried on anhydrous Na₂SO₄ and concentrated to afford compound 5 as oil in 70% yield. ¹H NMR (DMSO-d6, ppm) (Figure S10): 1.3-1.7 (m, 15H, -CH₂-, -NHCOOC(CH₃)₃); 2.9-3.0 (m, 2H, -CH₂NHCOO(CH₃)₃); 3.7-3.9 (m, 1H, -COCH(NH)-); 4.5 (d, 2H, -OCH₂-); 5.2-5.4 (d, 2H, -CH=CH₂); 5.7-6.0 (m,1H, -CH=CH₂); 6.7-6.9 (t, 3H, -NHCOO(CH₃)₃); 7.5 (d, 1H, -NHCO-); 12.5 (s, 1H, -COOH).

Step 3: DoGo1 (650 mg, 1.0 mmol) and compound 5 (332 mg, 1.0 mmol) were dissolved in dichloromethane (2.6 mL), and triethylamine (208 µL, 1.55 mmol) and EDCI (297.30 mg, 1.55 mmol) reagents were added, followed by stirring at room temperature under nitrogen atmosphere for 24 h. After the completion of the reaction, the mixture was washed with 5% citric acid, distilled water, saturated brine and dried on anhydrous Na₂SO₄. The organic layer was concentrated and purified by silica gel chromatography using dichloromethane and methanol (15:1) as eluent. The compound 6 was obtained as oil with the yield of 50%. The compound 6 was dissolved in a mixture of dichloromethane and trifluoroacetic acid (v/v=1/1), and vigorously stirred in room temperature for 30 min, the solvents were removed by evaporation and then washed with dichloromethane twice. Compound 6 was obtained as oil. ¹H NMR (DMSO-d6, ppm) (Figure S11): 0.8-0.9 (t, 6H, -CH₃); 1.1-1.4 (m, 63H, -CH₂-, -NHCOOC(CH₃)₃); 1.5-1.8 (m, 4H, -NHCOCH₂CH₂CH(NH₂)-); 2.0 (m, 8H, -CH₂CH=CHCH₂-); 3.0-3.2 (m, 6H, -CH₂NHCO-, -CH₂NHCOO(CH₃)₃); 3.9-4.3 (m, 2H, -COCH(NH)-, -COCH(NH)-); 4.5 (d, 2H, -OCH₂-); 5.3-5.5 (m, 6H, -CH=CH-, -CH=CH₂); 5.9 (m, 1H, -CH=CH₂); 6.7 (m, 1H, -NHCOOC(CH₃)₃);

7.3-8.0 (t, 4H, -CONH-). HRMS (ESI+): $[M + Na]^+$ (Figure S12): 980.7707. (Calcd for $C_{56}H_{103}N_5O_7$, 957.7858).

Step 4: Compound 6 (496.8 mg, 0.58 mmol) and compound 3 (283.6 mg, 0.58 mmol), triethylamine (120.4 μL, 0.87 mmol) and EDCI (144.4 mg, 0.75 mmol) were dissolved in dichloromethane (2 mL), and the solution was stirred at room temperature under nitrogen atmosphere for 24 h, followed by washed with 5% citric acid, distilled water, saturated brine and dried on anhydrous Na₂SO₄. The product was purified with silica gel chromatography using dichloromethane and methanol (10:1) as eluent. The compound 7 was obtained in 45% yield. ¹H NMR (DMSO-d6, ppm) (Figure S13): 0.8-0.9 (t, 6H, -CH₃); 1.1-1.4 (m, 87H, -CH₂-, -NHCOOC(CH₃)₃); 1.5-1.8 (m, 4H, -NHCOCH₂CH₂CH(NH₂)-); 2.0 (m, 8H, -CH₂CH=CHCH₂-); 3.0-3.2 (m, 10H, -CH₂NHCO-, -CH₂NHCOO(CH₃)₃); 3.9-4.3 (m, 3H, -COCH(NH)-, -COCH(NH)-); 4.5 (d, 2H, -OCH₂-); 5.3-5.5 (m, 6H, -CH=CH-, -CH=CH₂); 5.9 (m, 1H, -CH=CH₂); 6.7 (m, 2H, -NHCOOC(CH₃)₃); 7.3-8.0 (t, 5H, -CONH-). HRMS (ESI+): [M + Na]⁺ (Figure S14): 1353.0155. (Calcd for C₇4H₁₃₆N₈O₁₂, 1329.0278).

Step 5: Compound 7 (160 mg, 0.12 mmol) was dissolved in tetrahydrofuran (1 mL), and then Pd[P(C₆H₅)₃]₄ (12 mg, 0.04 mmol) and NaBH₄ (9.1 mg, 0.24 mmol) reagents were added, and the mixture was vigorously stirred at room temperature under nitrogen atmosphere for 1 h. After the completion of the reaction, the mixture was washed with saturated NaHCO₃, saturated brine and dried on anhydrous Na₂SO₄. The mixture was purified by silica gel chromatography using dichloromethane and methanol (10:1) as eluent. The N4 was obtained as oil after the evaporation of the purified solution into dryness. The yield was 60%. N4 was dissolved in hydrogen chloride-1,4-dioxane solution vigorously stirring in an ice bath for 30 min, the solvents were removed by evaporation and obtained the N4 as oil. ¹H NMR (DMSO-d6, ppm) of protected N4 (Figure S15): 0.8-0.9 (t, 6H, -CH₃); 1.1-1.4 (m, 87H, -CH₂-, -NHCOOC(CH₃)₃); 1.5-1.8 (m, 6H, -CH₂CH₂NH-, -NHCOCH₂CH₂CH(NH₂)-); 2.0 (m, 8H, -CH₂CH=CHCH₂-); 3.0-3.2 (m, 10H, -CH₂NHCO-, -

CH₂NHCOO(CH₃)₃); 4.1-4.3 (m, 3H, -COCH(NH)-); 5.4 (m, 4H, -CH=CH-); 6.7 (m, 2H, -NHCOOC(CH₃)₃); 7.6-8.0 (t, 5H, -CONH-). ¹³C NMR (DMSO-d6, ppm) of N4: 14.0 (q, 2C, -CH₃); 27.7 (t, 5C, -CH₂CH=CHCH₂-, -CH₂CH(NH)CO-); 32.0 (t, 1C, -COCH₂-); 39.2 (t, 2C, -CH₂NHCO-); 43.0 (t, 2C, -CH₂NH₂); 52.0 (t, 1C, -NHCH₂-); 61.0 (d, 2C, -CH(NH)CO-); 73.0 (d, 1C, -COCH(NH)-); 130.0 (d, 4C, -CH=CH-); 172.0 (s, 4C, -CO-). HRMS (ESI+) of N4 (Figure S17): [M + H]⁺ 945.8519. (Calcd for C₅₅H₁₀₈N₈O₄, 944.8494).

Synthesis of N5 lipid:

N4 (110 mg, 0.09 mmol), 2-(Boc-amino) ethyl Bromide (783 mg, 3.5 mmol) and K₂CO₃ (1.8 g, 13.4 mmol) were dissolved in N,N-dimethylformamide (1.5 mL). The reaction was performed at 60°C for 6 h. After the completion of the reaction, the mixture was washed with 5% citric acid, distilled water, saturated brine and dried on anhydrous Na₂SO₄. The product was purified with silica gel chromatography using dichloromethane and methanol (10:1) as eluent. The N5 was obtained as oil after the evaporation of the purified solution into dryness. The yield was 40%. N5 was dissolved in hydrogen chloride-1,4-dioxane solution vigorously stirring in an ice bath for 30 min, the solvents were removed by evaporation and obtained the N5 as oil. ¹H NMR (DMSO-d6, ppm) of protected N5 (Figure S18): 0.8-0.9 (t, 6H, -CH₃); 1.1-1.4 (m, 100H, -CH₂-, -NHCOOC(CH₃)₃); 1.5-1.8 (m, 4H, -NHCOCH₂CH₂CH(NH₂)-); 2.0 (m, 8H, -CH₂CH=CHCH₂-); 3.0-3.2 (m, 12H, -CH₂NHCO-, -CH₂NHCOO(CH₃)₃); 4.1-4.3 (m, 3H, -COCH(NH)-); 5.4 (m, 4H, -CH=CH-); 6.7 (m, 3H, -NHCOOC(CH₃)₃); 7.6-8.0 (t, 4H, -CONH-); 8.7-8.9(t, 1H, -CONH-). ¹³C NMR (DMSO-d6, ppm) of N5 (Figure S19): 14.0 (q, 2C, -CH₃); 27.7 (t, 5C, -CH₂CH=CHCH₂-, -CH₂CH(NH)CO-); 32.0 (t, 1C, -COCH₂-); 39.2 (t, 2C, -CH₂NHCO-); 43.0 (t, 3C, -CH₂NH₂); 52.0 (t, 2C, -NHCH₂-); 61.0 (d, 2C, -CH(NH)CO-); 73.0 (d, 1C, -COCH(NH)-); 130.0 (d, 4C, -CH=CH-); 172.0 (s, 4C, -CO-). HRMS (ESI+) of N5 (Figure S20): [M + H]⁺ 988.8965. (Calcd for C₅₇H₁₁₃N₉O₄, 987.8916).

Synthesis of N6 lipid:

DoGo2⁴¹ (155.2 mg, 0.20 mmol) and compound 3 (94.6 mg, 0.41 mmol) were dissolved in dichloromethane (2 mL), and then triethylamine (65 µL, 0.47 mmol) and EDCI (90 mg, 0.47 mmol) reagents were added, and the mixture was stirred at room temperature under nitrogen atmosphere for 24 h. The reaction mixture was then washed with 5% citric acid, distilled water, saturated brine and dried on anhydrous Na₂SO₄. The organic layer was concentrated and purified by silica gel chromatography using dichloromethane and methanol (10:1) as eluent. The N6 was obtained as oil after the evaporation of the purified solution into dryness. The yield was 65%. N6 lipid was dissolved in hydrogen chloride-1,4-dioxane solution and was vigorously stirred in an ice bath for 30 min, the solvents were removed by evaporation and the N6 was obtained as oil. ¹H NMR (DMSO-d6, ppm) of protected N6 (Figure S21): 0.8-0.9 (t, 6H, -CH₃); 1.1-1.4 (m, 118H, -CH₂-, -NHCOOC(CH₃)₃); 1.5-2.2 (m, 12H, -NHCOCH₂CH₂CH(NH₂)-, -CH₂CH=CHCH₂-); 2.8-3.5 (m, 14H, -CH₂NH-, -CH₂NHCOOC(CH₃)₃); 4.0-4.5 (m, 4H, -COCH(NH)CH₂-, -COCH(NH₂)-); 5.4 (m, 4H, -CH=CH-); 6.6-6.9 (t, 4H, -NHCOOC(CH₃)₃); 7.8-8.1 (t, 4H, -CONH-). ¹³C NMR (DMSO-d6, ppm) of N6 (Figure S22): 14.0 (q, 2C, -CH₃); 27.7 (t, 5C, -CH₂CH=CHCH₂-, -CH₂CH(NH)CO-); 32.0 (t, 1C, -COCH₂-); 39.2 (t, 2C, -CH₂NHCO-); 43.0 (t, 4C, -CH₂NH₂); 52.0 (t, 2C, -NHCH₂-); 61.0 (d, 2C, -CH(NH)CO-); 73.0 (d, 1C, -COCH(NH)-); 130.0 (d, 4C, -CH=CH-); 172.0 (s, 6C, -CO-). HRMS (ESI+) of N6 (Figure S23): $[M + H]^+$: 1102.9760. (Calcd for $C_{62}H_{123}N_{11}O_5$, 1101.9709).

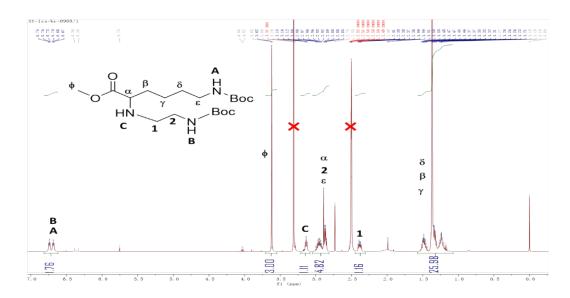


Figure S1 ¹H NMR spectrum of compound 1 (Solvent: DMSO-d6).

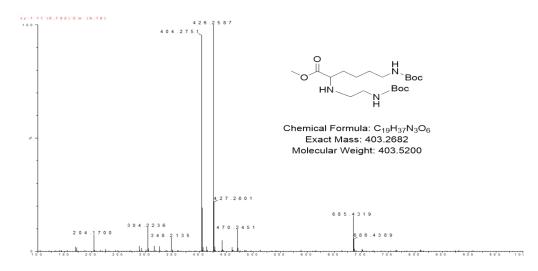


Figure S2 19 Mass spectrum of compound 1.



Figure S3 ¹H NMR spectrum of compound 2 (Solvent: DMSO-d6).

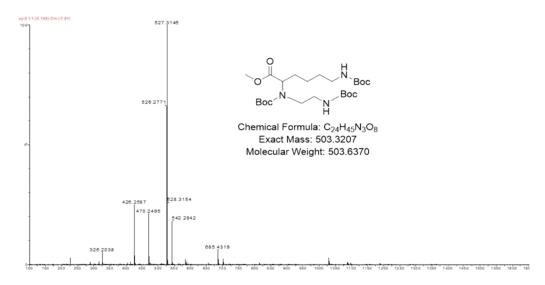


Figure S4 Mass spectrum of compound 2.

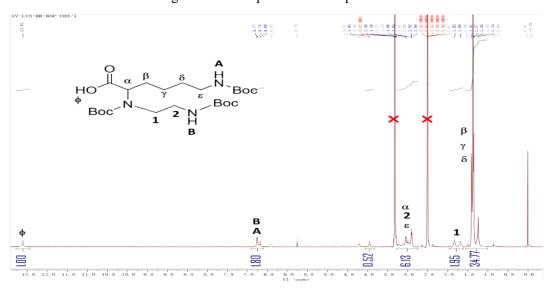


Figure S5 ¹H NMR spectrum of compound 3 (Solvent: DMSO-d6).

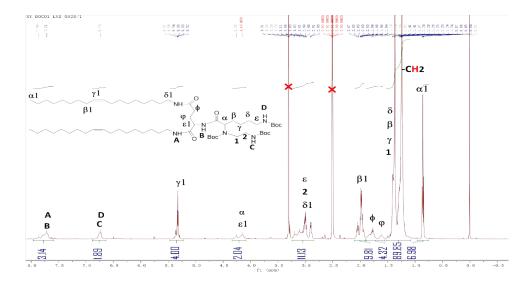


Figure S6 ¹H NMR spectrum of N3 (Solvent: DMSO-d6).

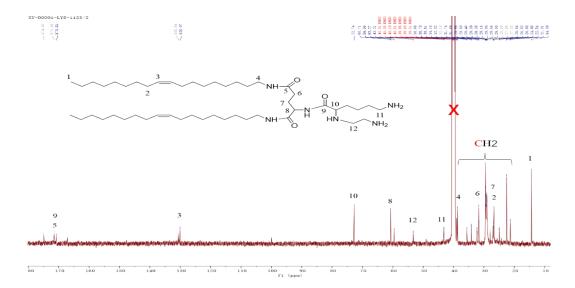


Figure S7 ¹³C NMR spectrum of N3 (Solvent: DMSO-d6).

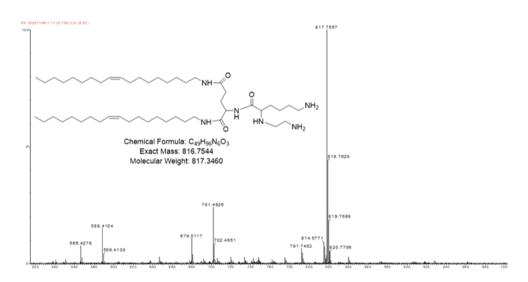


Figure S8 Mass spectrum of N3.

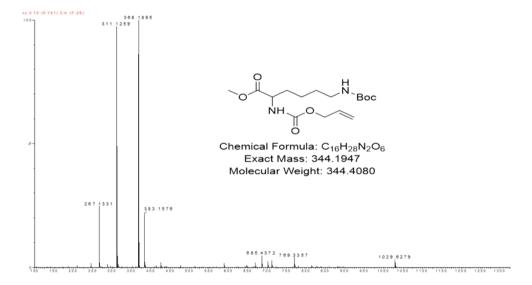


Figure S9 Mass spectrum of compound 4.

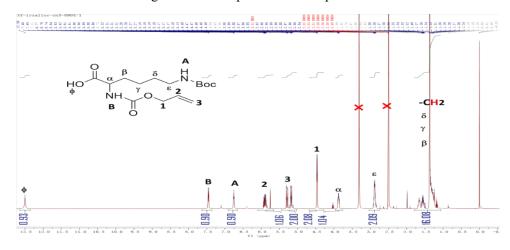


Figure S10 ¹H NMR spectrum of compound 5 (Solvent: DMSO-d6).

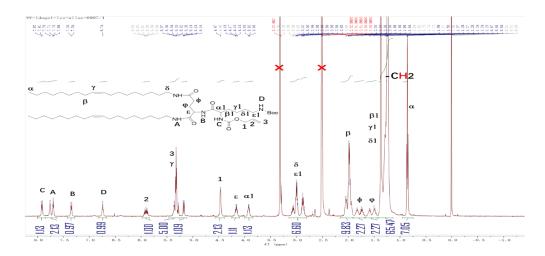


Figure S11 ¹H NMR spectrum of compound 6 (Solvent: DMSO-d6).

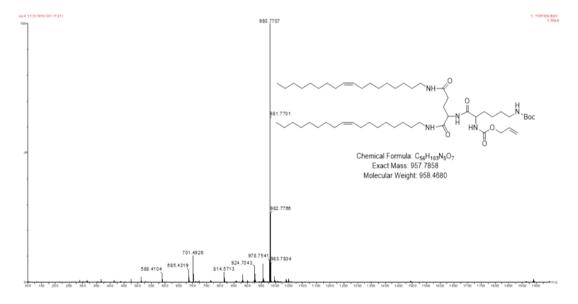


Figure S12 Mass spectrum of compound 6.

Figure S13 ¹H NMR spectrum of compound 7 (Solvent: DMSO-d6).

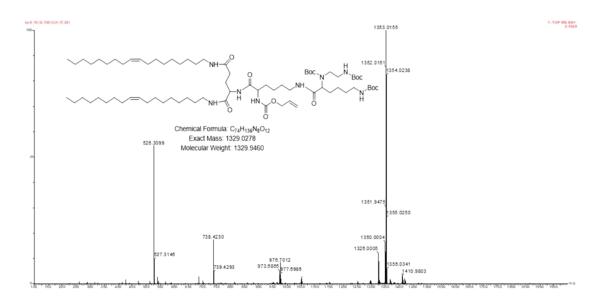


Figure S14 Mass spectrum of compound 7.

Figure S15 ¹H NMR spectrum of N4 (Solvent: DMSO-d6).

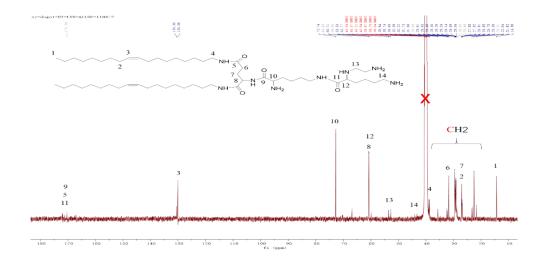


Figure S16 ¹³C NMR spectrum of N4 (Solvent: DMSO-d6).

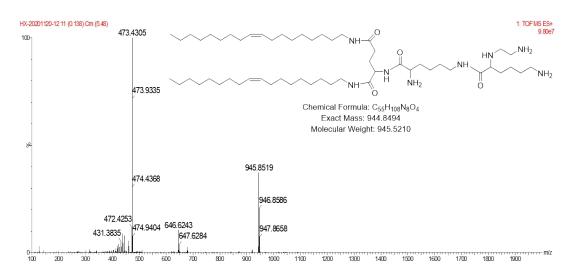


Figure S17 Mass spectrum of N4.

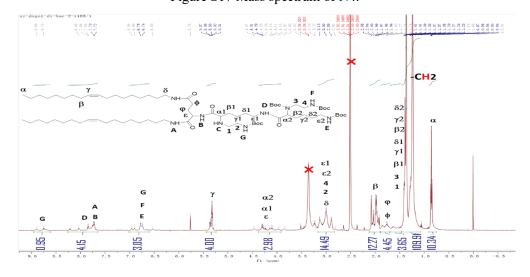


Figure S18 ¹H NMR spectrum of N5 (Solvent: DMSO-d6).

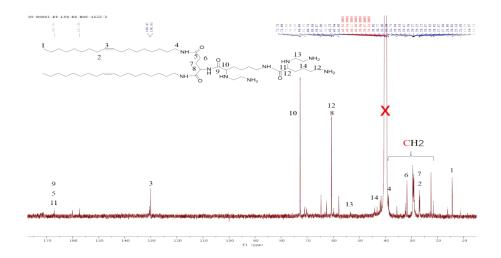


Figure S19 ¹³C NMR spectrum of N5 (Solvent: DMSO-d6).

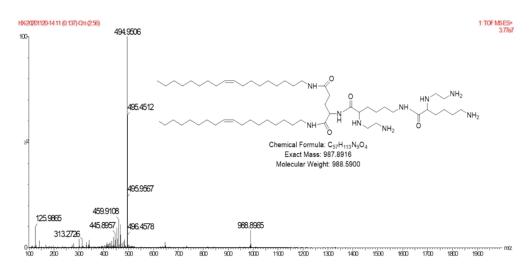


Figure S20 Mass spectrum of N5.

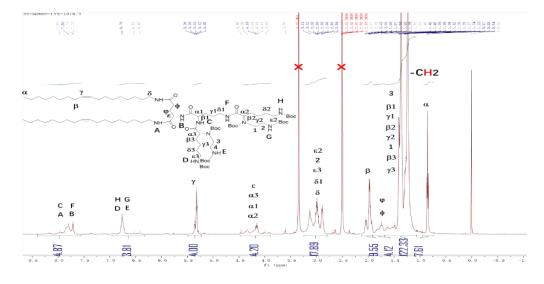


Figure S21 ¹H NMR spectrum of N6 (Solvent: DMSO-d6).

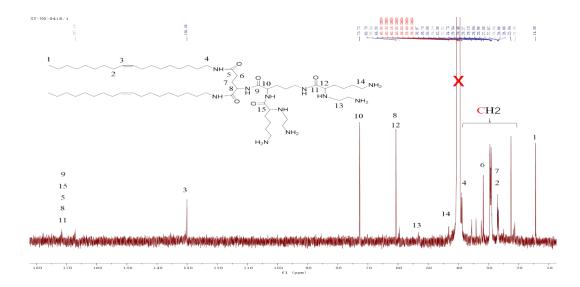


Figure S22 ¹³C NMR spectrum of N6 (Solvent: DMSO-d6).

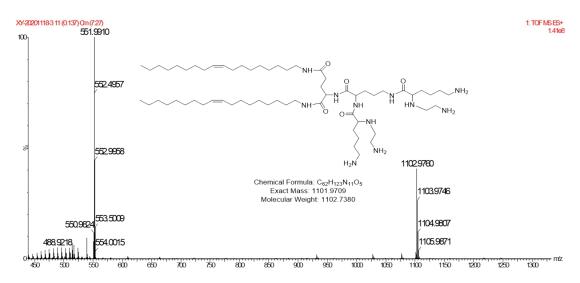


Figure S23 Mass spectrum of N6.