Supplementary Information

Discovery of penta-peptides inhibiting activity of formylglycine generating enzyme and its potential antibacterial effect against *Mycobacterium tuberculosis*

Nicholas Asiimwe,^a Mohammad Faysal Al Mazid,^a Yong Taek Jeong,^b Juyong Lee,^c Jun-Seok Lee^{b,*}

Figure S1. FGE activity inhibition assay upon serial concentration of LSTPSR peptide treatment. Targeted LCMS chromatograms between substrate and fGly product after incubation for 1 hour were used to calculate (a) fGly conversion percentage and (b) activity inhibition percentage.

	-1 169E		179T	186C	
M. smegmatis	- G F L <mark>Y</mark> A	MGDEVCPDGQ <mark>L</mark> M	AN <mark>TW</mark> C	A P E Y <mark>C</mark> HR Y R P	
M. smegmatis	- T T V <mark>Y</mark> A	WGDDV R P D G Q <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> HR Y R P	
M. sp. MS1601	- S T T <mark>Y</mark> A	WGDEAAPGGR <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> HR Y R P	
M. tuberculosis	- T A T <mark>Y</mark> A	WGDQEKPGGM <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> HR Y R P	
M. xenopi	- T T T <mark>Y</mark> V	WGDEEKPNGR <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> H R Y R P	
M. paratuberculosis	- T T T <mark>Y</mark> F	WGDEPTSDGR <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> H R Y R P	
M. botniense	- T T T <mark>Y</mark> P	WGDEEKPGGQ <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> H R Y R P	
M. haemophilum	- A T T <mark>Y</mark> S	WGDEARPDGQ <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> H R Y R P	
M. bohemicum	- T T T <mark>Y</mark> A	WGDEANPGGR <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> HR Y R P	
M. heidelbergense	- T T T <mark>Y</mark> S	WGDEAAPDGQ <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> H R Y R P	
M. marinum	- T T T <mark>Y</mark> A	MGDEEKPAGQ <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> H R Y R P	
M. kansasii	- TTT <mark>Y</mark> A	WGDEATPGGQ <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> H R Y R P	
M. pseudokansasii	- TTT <mark>Y</mark> A	WGDEATPGGQ <mark>L</mark> M	A N <mark>TW</mark> C	A P E Y <mark>C</mark> HR Y R P	
Homo sapiens	- N R L F P	WGNKLQPKGQ <mark>H</mark> Y	A N I W C	HR S Y <mark>C</mark> Y R Y R C	
T. curvata	- QA R <mark>Y</mark> F	WGNELTPRGR <mark>H</mark> R	CN <mark>IW</mark> C	HE S Y <mark>C</mark> NR Y R V	
S. coelicolor	- G R R <mark>Y</mark> A	MGDELTPGGR R R	C <mark>NIW</mark> C	HD S Y <mark>C</mark> NR YRV	

Figure S2. Multiple sequence alignment of FGE from multiple mycobacterium species in comparison with human, T Thermomonospora curvata and Streptomyces coelicolor. Conserved small hydrophobic subdomain containing a buried alanine (pink) which is substituted for cysteine (pink)

(b)

Region 1	Region 2	Region 3	Region 4	Region 5	Region 6
SMMMC	GWTME	GWTRS	GWTQK	SGWWW	TYWWW
SCGMM	GHGGE	GWTSK	GHGGP	GYWWW	GPWYW
SSCCC	SSCMC				GWWPW
	DGACA				SPWWW
	TPKEK				SWWPW
	TSCKM				

Figure S3. (a) Boxplot of docking energies of penta-peptide ligand (xXXXX: where x: CDEHKLMPQRY, X: any amino acids). (b) Re-sampled and selected peptide belong into the statistical distribution for *in vitro* FGE activity inhibition assay. Inter-Quantile Range (IQR) is distance between upper and lower quantile (IQR = Q3-Q1)

Figure S4. MS-chromatogram profile FGE activity in the presence of various TYWWW concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S5. MS-chromatogram profile FGE activity in the presence of various GPWYW concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S6. MS-chromatogram profile FGE activity in the presence of various GWWPW concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S7. MS-chromatogram profile FGE activity in the presence of various SGWWW concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S8. MS-chromatogram profile FGE activity in the presence of various SPWWW concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S9. MS-chromatogram profile FGE activity in the presence of various SWWPW concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S10. MS-chromatogram profile FGE activity in the presence of various GYWWW concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S11. MS-chromatogram profile FGE activity in the presence of various GWTME concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S12. MS-chromatogram profile FGE activity in the presence of various GWTRS concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S13. MS-chromatogram profile FGE activity in the presence of various GWTQK concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S14. MS-chromatogram profile FGE activity in the presence of various GWTSK concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S15. MS-chromatogram profile FGE activity in the presence of various GHGGP concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S16. MS-chromatogram profile FGE activity in the presence of various GHGGE concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S17.MS-chromatogram profile FGE activity in the presence of various SMMMC concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S18. MS-chromatogram profile FGE activity in the presence of various SCGMM concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S19.MS-chromatogram profile FGE activity in the presence of various SSCMC concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S20. MS-chromatogram profile FGE activity in the presence of various SSCCC concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S21. MS-chromatogram profile FGE activity in the presence of various DGACA concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S22. MS-chromatogram profile FGE activity in the presence of various TPKEK concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.

Figure S23. MS-chromatogram profile FGE activity in the presence of various TSCKM concentrations. The peptide inhibitor was neither N-terminal acetylated nor C-terminal amidated and the reaction contained 200μ M native enzyme substrate.