Electronic Supplementary Information (ESI)

Therapeutic deep eutectic solvent-based microemulsion enhances anti-inflammatory efficacy of curcuminoids and aromatic-turmerone extracted from *Curcuma longa* L.

Nassareen Supaweera^a, Wanatsanan Chulrik^b, Chutima Jansakun^b, Phuangthip Bhoopong^{b,d} Gorawit Yusakul^{c*}, Warangkana Chunglok^{b,d*}

^aHealth Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand
^bSchool of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
^cSchool of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
^dFood Technology and Innovation Research Center of Excellence, Research and Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, Thailand

*Corresponding author

Dr. Warangkana Chunglok School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand E-mail: cwarang@wu.ac.th and aon.cwarang@gmail.com Dr. Gorawit Yusakul School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand E-mail: gorawit.yu@wu.ac.th and gorawit.yu@mail.wu.ac.th

Table of Contents

	Page
Title page	S 1
Table of contents	S2
Table S1. HDES microemulsions after dilution in water (1/1000)	S3
Figure S1. Correlation of extraction yields of Cur and <i>ar</i> -Tur	S4
Figure S2. NO inhibition in LPS-activated macrophages by CL extract in ME-71-74	S5
Figure S3. NO inhibition in LPS-activated macrophages by CL extract in ME-41-44	S6
Figure S4. NO inhibition in LPS-activated macrophages by CL extract in ME-21–25	S 7
Figure S5. NO inhibition in LPS-activated macrophages by CL extract in organic solvents	
and Cur in DMSO	S 8
Figure S6. Cell viability in LPS-activated macrophages	S9
Figure S7. NO inhibition in LPS-activated macrophages by Cur in DMSO	S10
Figure S8. Inflammatory cytokine production and cell viability in LPS-activated	
differentiated THP-1 macrophages	S11

	Components (wt%)			Blank microomulsion		Mignoomulsion ovtroots	
Microemulsion	HDES	Smix	Water	Size (nm)	PDI	Size (nm)	PDI
UDES of octoro	in anidum	onthol	water	Size (iiii)	101	Size (iiii)	TDI
TDES OF OCTAILO		entiloi					
(70:30, mass ration)	10)		_				
ME-71	5	90	5	6.20 ± 1.16	0.46 ± 0.11	8.62 ± 1.80	0.50 ± 0.04
ME-72	15	80	5	2.85 ± 0.16	$0.40{\pm}0.06$	4.18 ± 0.14	0.38 ± 0.04
ME-73	25	70	5	7.43 ± 0.69	$0.69{\pm}0.03$	1.38 ± 0.07	0.72 ± 0.02
ME-74	35	60	5	22.7±3.7	$0.38 {\pm} 0.08$	8.31 ± 0.89	$0.49{\pm}0.02$
HDES of octanoi	ic acid:m	enthol					
(40:60, mass rati	io)						
ME-41	5	90	5	6.63±1.74	$0.46{\pm}0.07$	3.42 ± 0.57	0.32 ± 0.03
ME-42	15	80	5	1.21 ± 0.75	0.35±0.13	$3.40{\pm}0.06$	0.30 ± 0.00
ME-43	25	70	5	8.43 ± 0.23	$0.54{\pm}0.02$	13.6 ± 0.1	0.63 ± 0.01
ME-44	35	60	5	5.82 ± 0.21	0.41 ± 0.02	9.94±1.13	0.61 ± 0.05
HDES of octanoi	ic acid:m	enthol					
(20:80, mass rati	io)						
ME-21	5	90	5	7.08 ± 1.83	$0.54{\pm}0.06$	5.50 ± 0.55	0.64 ± 0.09
ME-22	15	80	5	10.4 ± 0.2	0.66 ± 0.01	1.96 ± 0.33	0.21 ± 0.03
ME-23	25	70	5	10.2 ± 0.4	0.65 ± 0.03	18.6 ± 0.1	0.63 ± 0.01
ME-24	35	60	5	12.1±0.2	$0.80{\pm}0.04$	3.02 ± 0.04	$0.46{\pm}0.01$
ME-25	45	50	5	$12.7{\pm}1.0$	0.71 ± 0.02	51.3±6.5	$0.90{\pm}0.10$

Table S1. HDES microemulsions after dilution in water (1/1000) (n = 3, mean \pm SEM)

Figure S1. Correlation of extraction yields of Cur and *ar*-Tur

Figure S2. NO inhibition in LPS-activated murine macrophages by CL extract in ME-71 (A), CL extract in ME-72 (B), CL extract in ME-73 (C), and CL extract in ME-74 (D). Data are presented as mean \pm SEM of three independent experiments in triplicate. ####p < 0.0001 vs. untreated control; *p < 0.05, **p < 0.01, ****p < 0.0001 vs. LPS-stimulated cells; $\delta p < 0.05$, $\delta \delta p < 0.01$, and $\delta \delta \delta \delta p < 0.0001$ vs. ME-71, ME-72, ME-73, or ME-74.

Figure S3. NO inhibition in LPS-activated murine macrophages by CL extract in ME-41 (A), CL extract in ME-42 (B), CL extract in ME-43(C), and CL extract in ME-44 (D). Data are presented as mean \pm SEM of three independent experiments in triplicate. ## p < 0.01, ####p < 0.0001 vs. untreated control; *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.001 vs. LPS-stimulated cells; $\delta\delta\delta p < 0.001$, $\delta\delta\delta\delta p < 0.0001$ vs. ME-41, ME-42, ME-43, or ME-44.

Figure S4. NO inhibition in LPS-activated murine macrophages by CL extract in ME-21 (A), CL extract in ME-22 (B), CL extract in ME-23 (C), CL extract in ME-24 (D), and CL extract in ME-25 (E). Data are presented as mean \pm SEM of three independent experiments in triplicate. #p < 0.05, ## p < 0.01, #### p < 0.0001 vs. untreated control; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. LPS-stimulated cells; $\delta p < 0.05$, $\delta \delta p < 0.01$, and $\delta \delta \delta p < 0.001$ vs. ME-21, ME-22, ME-23, ME-24, or ME-25.

Figure S5. NO inhibition in LPS-activated murine macrophages by CL extract in DMSO (A), CL extract in ethanol (B), CL extract in methanol (C), and Cur in DMSO (D). Data are presented as mean \pm SEM of three independent experiments in triplicate. ####p < 0.0001 vs. untreated control; *p < 0.05, ***p < 0.001, ****p < 0.0001 vs. LPS-stimulated cells; $\delta\delta\delta p < 0.001$, $\delta\delta\delta\delta p < 0.0001$ vs. DMSO, ethanol, or methanol

Figure S6. Cell viability in LPS-activated murine macrophage by Cur in ME-23, Curs in ME-23, CL extract in ME-23, and ME-23 (A), as well as Curs, octanoic acid, and menthol in DMSO (B). Data are presented as mean \pm SEM of three independent experiments in triplicate. *p < 0.05 vs. LPS-stimulated cells.

Figure S7. NO inhibition in LPS-activated murine macrophages by Cur in DMSO. Data are presented as mean \pm SEM of three independent experiments in triplicate. #p < 0.05, ###p < 0.0001 vs. untreated control; *p < 0.05, ****p < 0.0001 vs. LPS-stimulated cells.

Figure S8. Inflammatory cytokine production and cell viability in LPS-activated differentiated THP-1 macrophages. Anti-inflammatory effects of Cur in ME-23, Curs in ME-23, CL extract in ME-23, and ME-23, as well as Curs, octanoic acid, and menthol in DMSO against inflammatory cytokines TNF- α (A) and IL-6 (B) production in LPS-activated differentiated THP-1 macrophages. (C) Cell viability determined by the MTT assay. Data are presented as mean \pm SEM of three independent experiments. ###p < 0.001, ####p < 0.0001 vs. untreated control; *p < 0.05, **p < 0.01 ***p < 0.001, ****p < 0.0001 vs. LPS-stimulated cells.