Supporting information

CQDs/ZnO Composite Based on Waste Rice Noodles: Preparation and Photocatalytic Capability

Xin-Yan Jin, Wan-ying Ying, Rui-jie Che, Ping Xiao, Yu-Qing Zhou, Yan Liu, Meng-Yu Liu and Shuo-ping Chen*

College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
*Corresponding author. Email: chenshuoping_777@163.com (S. P. Chen)

Figure S-1 The emission spectrum of the 405 nm purple light lamp.

Figure S-2 The pseudo-first-order kinetic fitting of photocatalytic degradation of $\mathrm{CQDs} / \mathrm{ZnO}-1$ sample (a), $\mathrm{CQDs} / \mathrm{ZnO}-2$ sample (b), $\mathrm{CQDs} / \mathrm{ZnO}-3$ sample (c), CQDs/ZnO-4 sample (d), CQDs/ZnO-5 sample (e), $\mathrm{CQDs} / \mathrm{TiO}_{2}$ (f) and commercial $\mathrm{ZnO}(\mathrm{g})$ to methylene blue within different irradiation times under 405 nm purple light.

Figure S-3 The pseudo-first-order kinetic fitting of photocatalytic degradation of $\mathrm{CQDs} / \mathrm{ZnO}$ composite to malachite green (a), methyl violet (b), basic fuchsin (c), rhodamine B (d), tetracycline (e), aniline (f) and methylene blue (g) within different irradiation times under 405 nm purple light.

Table S-1 The kinetic parameters obtained for the photocatalytic degradation of different photocatalysts under 405 nm purple light.

Photocatalysts	$\mathbf{K}_{\text {app }} \mathbf{(\mathbf { m i n } ^ { \mathbf { 1 } } \mathbf {) }}$	$\mathbf{R}^{\mathbf{2}}$
$\mathrm{CQDs} / \mathrm{ZnO-}$	0.1024 ± 0.0061	0.9895
$\mathrm{CQDs} / \mathrm{ZnO}-2$	0.2630 ± 0.0081	0.9972
$\mathrm{CQDs} / \mathrm{ZnO}-3$	0.2420 ± 0.0037	0.9993
$\mathrm{CQDs} / \mathrm{ZnO}-4$	0.2026 ± 0.0067	0.9968
$\mathrm{CQDs} / \mathrm{ZnO}-5$	0.1829 ± 0.0089	0.9930
$\mathrm{CQDs} / \mathrm{TiO}_{2}$	0.0581 ± 0.0023	0.9953
ZnO	0.0243 ± 0.0013	0.9924

Table S-2 The kinetic parameters obtained for the photocatalytic degradation of various organic pollutants under 405 nm purple light.

Organic pollutants	$\mathbf{K}_{\text {app }}\left(\mathbf{m i n}^{\mathbf{1}} \mathbf{)}\right.$	$\mathbf{R}^{\mathbf{2}}$
methylene blue	0.2630 ± 0.0081	0.9963
malachite green	1.9260 ± 0.0910	0.9911
methyl violet	0.3175 ± 0.0088	0.9970
basic fuchsin	0.2056 ± 0.0041	0.9984
rhodamine B	0.1745 ± 0.0041	0.9978
tetracycline	0.3573 ± 0.0119	0.9956
aniline	0.0187 ± 0.0001	0.9971

