Supporting Information (SI)

Electric field tunable of the electronic properties and contact types in MoS2/SiH heterostructure

Son-Tung Nguyen¹, Chuong V. Nguyen², Kien Nguyen-Ba³, Huy Le-Quoc^{3,†}, Nguyen

V. Hieu⁴ and Cuong Q. Nguyen^{5,6,†}

¹Faculty of Electrical Engineering Technology, Hanoi University of Industry, Hanoi 100000, Vietnam

²Department of Materials Science and Engineering,

Le Quy Don Technical University, Ha Noi 100000, Vietnam

³The University of Danang - University of Science and Technology, Danang 550000,

Vietnam.

⁴Physics Department, The University of Danang - University of Science and Education, Da Nang 550000, Vietnam

⁵Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam. ⁶Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam

[†]Corresponding authors: <u>lqhuy@dut.udn.vn</u> and <u>nguyenquangcuong3@duytan.edu.vn</u>

Fig. S1. Band alignments between two different semiconductors A and B.

Fig. S2. Different stacking configurations of MoS2/SiH heterostructures (a) stacking I, (b) stacking II, (c) stacking III and (d) stacking IV.

Fig. S3. Projected band structures of MoS2/SiH heterostructure under the applied strengths of electric field of (a) E = -0.4 V/Å and (b) E = +0.4 V/Å. These values of electric field were applied for both the geometric optimization and electronic properties calculations.