Supporting Information

Assessment of a Host-Guest Interaction in a Bilayer Membrane Model

Harshita Kumari,^a* Saeedeh Negin,^b Andrew Eisenhart,^d Mohit B. Patel,^b Thomas L. Beck,^{d,e} Frank Heinrich,^{f,g} Helena J. Spikes,^b George W. Gokel^{b,c}*

^aJames L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA, 45267-0514.^bChemistry & Biochemistry and ^cBiology. University of Missouri–St. Louis, 1 University Blvd., St. Louis, MO 63121 U. S. A. ^dDepartment of Chemistry, University of Cincinnati, OH 45267 USA. ^eNational Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830. ^fDepartment of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA. ^gNIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

1 NMR

Figure S1. Vials containing $C_{10}LE$, tetracycline and $C_{10}LE$ complexed with tetracycline.

Figure S3. ¹H NMR spectrum of tetracycline hydrochloride

Figure S4. ¹H NMR spectrum of C₁₀LE complexed with tetracycline hydrochloride

Figure S5. FT-IR spectrum of C₁₀LE

Figure S6. FT-IR spectrum of tetracycline hydrochloride.

Figure S7. FT-IR spectrum of $C_{10}LE$ complexed with tetracycline hydrochloride.

Figure S8. Stackplot ¹H NMR spectrum of C₁₀LE complexed with minocycline.

Table S-1. ¹H-NMR Spectra of *N*,*N*-Didecyl-4,13-diaza-18-crown-6 and Tetracycline Hydrochloride Recorded in CDCl₃.

Compound	Chemical Shift and Multiplicity ^a											
C ₁₀ LE						3.7 q		2.8 t	2.5 t	1.5 s	1.3 s	0.9 t
TET	7.6 t	7.1 d	6.9 d	5.1 s				2.7				
1:1 Mixture	7.5 t	7.1 d	6.9 d	6.1 s	3.8 s	3.6 s	3.0 m	2.8 m	2.5 s	1.6 s	1.3 s	0.9 t
Notes: $d = doublet$, $m = multiplet$, $q = quartet$, $s = singlet$, $t = triplet$.												

The NMR spectrum of the solution containing both tetracycline and lariat ether shows significant distortions in the peaks corresponding to the crown protons, notably at 3.03 and 2.77 ppm. For this reason, all calculations relating to a complexation ratio were made using the aliphatic signal at 1.28, which corresponds to the internal aliphatic protons of the two sidearms. This signal was then compared with peaks which corresponded to the aromatic and dimethylamine protons found in tetracycline. The three aromatic protons appear between 6.9 and 7.5 ppm, while the dimethylamine protons appear at about 2.4 ppm. Each trial then averaged the complexation values obtained from the comparison of these signals with the aliphatic LE signal using the equation below. In summary, the NMR complexation experiment was replicated 5 times, although the average of 1.00 ± 0.03 is ultimately the result of 20 individual calculations.

 $\frac{Integral_{LE}}{Integral_{Tet}} * \frac{Proton_{Tet}}{Proton_{LE}} = Complexation Ratio$

Included is a sample calculation, which compares the dimethylamine signal of tetracycline with the aliphatic signal of LE.

 $\frac{27.3298}{5.8771} * \frac{6}{28} = 0.99675$

2 NR DATA: C₁₀LE / Tetracycline hydrochloride

2.1 Experimental

All experiments were carried out in pure water or heavy water. Solution of small molecules was aided by DMSO, where necessary.

Compound	Formula	Volume (Å ³)	Neutron scattering length (Å)	Neutron scattering length density (Å ⁻²)
tetracycline	C ₂₂ H ₂₄ N ₂ O ₈	470	1.2E-03	2.6E-06
tetracycline, labile protons exchanged to deuterons	$C_{22}H_{18}D_6N_2O_8$	470	1.8E-03	3.9E-06
C ₁₀ LE	C ₃₂ H ₆₆ N ₂ O ₄	700	7.8E-05	0.1E-06
C ₁₀	C ₂₀ H ₄₂	460	-2.5E-04	-0.5E-06
LE	C ₁₂ H ₂₄ N ₂ O ₄	240	3.2E-04	1.3E-06
d ₃₁ -POPC chains	C ₃₂ H ₃₃ D ₃₁	925	3.0E-03	3.2E-06
h-POPC chains	C ₃₂ H ₆₄	925	-2.72E-04	-0.3E-06
POPC headgroup	$C_{10}H_{18}O_8NP$	331	6.0E-04	1.8E-06

Table S1. A table with the scattering length densities used in the fits

2.2 $C_{10}LE$ / tetracycline complex

Table S2: Median fit parameter values and 68% confidence limits for the simultaneous analysis of the $C_{10}LE$ / tetracycline hydrochloride experiments using a solid supported lipid bilayer composed of either d_{31} -POPC or h_{31} -POPC.

	12 μM C ₁₀ LE / 5 μM	87 μM C ₁₀ LE / 36 μM	Rinse	
	tetracycline incubation	tetracycline incubation		
Substrate				
Thickness silicon oxide h_{31}/d_{31} -	8.8±0.4 / 8.0±0.9	8.7±0.6 / 8.2±0.7	9.0±0.6 / 7.9±0.6	
POPC / Å				
Substrate roughness, standard	4.6±0.1 /2.6±0.6	4.5±0.4 / 2.6±0.6	4.7±0.5 / 2.7±1.0	
deviation σ / Å				
Bilayer				
Thickness sub-membrane space	1.0±0.4 / 1.8±0.8	1.3±0.5 / 1.6±0.7	1.5±0.5 / 1.2±0.7	
/ Å				
Hydrocarbon thickness inner	16.3±0.6 / 15.7±1.2	15.5±0.5 / 14.9±0.7	15.5±0.5 / 14.9±0.7	
lipid leaflet neat bilayer				
Hydrocarbon thickness outer	12.9±0.5 / 13.6±1.0	13.3±0.5 / 13.8±0.7	12.9±0.5 / 13.4±0.6	
lipid leaflet neat bilayer				
Thickness change per leaflet	-0.3±0.2 / -0.3±0.4	-0.8±0.2 / -0.2±0.3	-1.3±0.4 / -0.7±0.7	
after adding avobenzone				
Bilayer completeness neat	1.00±0.01 / 0.99±0.01	1.00±0.01 / 0.98±0.01	1.00±0.01 / 0.98±0.01	
bilayer				
Bilayer completeness after	1.00±0.01 / 0.99±0.01	1.00±0.01 / 1.00±0.01	1.00±0.01 / 1.00±0.01	
incubation				

C ₁₀ LE / tetracycline						
Peak position of C10LE	n/a	-33.7 ± 2.6	-32.8 ± 1.7			
distribution with respect to						
headgroup / bulk solvent						
interface / Å						
C ₁₀ LE / tetracycline amount	total: 1.3 ± 0.6	total: 6.2 ± 0.8	total: 6.7 ± 1.3			
associated with bilayer (volume	C10LE: 0.7 ± 0.4	C10LE: 5.0 ± 0.4	C10LE: 5.4 ± 1.0			
surface density) / Å ³ /Å ²	tetracycline: 0.4 ± 0.2	tetracycline: 1.3 ± 0.6	tetracycline: 1.2 ± 0.5			

Figure S9: Fresnel normalized neutron reflectivity for the measurements of the as-prepared lipid bilayer and after adding of 12 μ M C₁₀LE / 5 μ M tetracycline hydrochloride. Reflectivities for the h₃₁-POPC and d₃₁-POPC lipid bilayers are shown.

Figure S10: Fresnel normalized neutron reflectivity for the measurements of the as-prepared lipid bilayer and after adding of 87 μ M C₁₀LE / 36 μ M tetracycline hydrochloride. Reflectivities for the h₃₁-POPC and d₃₁-POPC lipid bilayers are shown.

Figure S11: Fresnel normalized neutron reflectivity for the measurements of the as-prepared lipid bilayer and after a final rinse with pure water. Reflectivities for the h_{31} -POPC and d_{31} -POPC lipid bilayers are shown.

Figure S12: Best-fit nSLD profiles for the measurements of the as-prepared d_{31} -POPC and h_{31} -POPC lipid bilayers and after adding 12 μ M C₁₀LE / 5 μ M TET.

 $C_{10}LE$ /tetracycline hydrochloride 87 μ M/36 μ M

Figure S13: Best-fit nSLD profiles for the measurements of the as-prepared d_{31} -POPC and h_{31} -POPC lipid bilayers and after adding 87 μ M C₁₀LE / 36 μ M TET.

Figure S14: Best-fit nSLD profiles for the measurements of the as-prepared d_{31} -POPC and h_{31} -POPC lipid bilayers and after a final rinse with pure water.

2.3 C10LE

Table S3: Median fit parameter values and 68% confidence limits for the analysis of the C10LE experiments.

	12 µM C10LE	58 µM C10LE	Rinse
Substrate			•
Thickness silicon oxide h31/d31-POPC / Å	8.0 ± 0.8 / $8.2 \pm$	$7.2 \pm 0.6 / 9.7 \pm$	$7.6 \pm 0.7 / 8.2 \pm$
	0.6	0.5	0.5
Substrate roughness, standard deviation σ / Å	$4.3 \pm 0.4 / 3.6 \pm$	$0.8 \pm 0.4 / 2.0 \pm$	$4.4\pm0.4/4.6\pm$
	0.7	0.4	0.4
Bilayer			
Thickness sub-membrane space / Å	1.9 ± 0.9 / 3.9 \pm	1.9 ± 0.6 / 3.0 \pm	1.7 ± 0.6 / 3.0 \pm
	0.6	0.6	0.7
Hydrocarbon thickness inner lipid leaflet	$16 \pm 1 / 19 \pm 1$	$14 \pm 1 / 12 \pm 1$	$14 \pm 1 \ / \ 10 \pm 1$
Hydrocarbon thickness outer lipid leaflet	$13 \pm 1 / 10 \pm 1$	$12 \pm 1 / 13 \pm 1$	$11 \pm 1 / 14 \pm 1$
Thickness change per leaflet after incubation	$-0.1 \pm 0.2 \ / \ +0.2$	$-1.5 \pm 0.2 / -1.9$	-1.9 \pm 0.2 / -2.3 \pm
	± 0.2	± 0.3	0.3
Bilayer completeness neat bilayer	0.98 ± 0.01 /	0.96 ± 0.01 /	$0.96 \pm 0.01 \ / \ 0.97$
	0.98 ± 0.01	0.94 ± 0.01	± 0.02
Bilayer completeness after adding C10LE	0.99 ± 0.01 /	1.00 ± 0.01 /	$0.99 \pm 0.01 \ / \ 0.98$
	0.96 ± 0.01	0.99 ± 0.01	± 0.01
Area per lipid outer leaflet with C10LE / $Å^2$	$90 \pm 7 \ / \ 70 \pm 5$	$75 \pm 7 \ / \ 70 \pm 5$	$80 \pm 5 \ / \ 65 \pm 5$
C10LE			
C10LE amount associated with bilayer (volume surface density) / $Å^3/Å^2$	$3.\overline{0 \pm 0.4}$	7.4 ± 0.4	4.5 ± 0.7

Figure S15: Fresnel normalized neutron reflectivity for the measurements of the as-prepared lipid bilayer and after adding of 12 μ M C₁₀LE. Reflectivities for the h₃₁-POPC and d₃₁-POPC lipid bilayers are shown.

Figure S16: Fresnel normalized neutron reflectivity for the measurements of the as-prepared lipid bilayer and after adding of 58μ M C10LE. Reflectivities for the h31-POPC and d31-POPC lipid bilayers are shown.

Figure S17: Fresnel normalized neutron reflectivity for the measurements of the as-prepared lipid bilayer and after a final rinse with pure water. Reflectivities for the h31-POPC and d31-POPC lipid bilayers are shown.

Figure S18: Best-fit nSLD profiles for the measurements of the as-prepared d_{31} -POPC and h_{31} -POPC lipid bilayers and after adding 12 μ M C10LE.

Figure S19: Best-fit nSLD profiles for the measurements of the as-prepared d_{31} -POPC and h_{31} -POPC lipid bilayers and after adding 58 μ M C10LE.

Figure S20: Best-fit nSLD profiles for the measurements of the as-prepared d_{31} -POPC and h_{31} -POPC lipid bilayers and after a final rinse with pure water.

2.4 Tetracycline

Table S4: Median fit parameter values and 68% confidence limits for the analysis of the tetracycline experiments.

	5 μM tetracycline	36 μM tetracycline	Rinse
Substrate			1
Thickness silicon oxide / Å	6.9±0.7	6.7±0.6	6.7±0.7
Substrate roughness, standard deviation σ / Å	5.1±0.4	5.2±0.4	4.9±0.5
Bilayer			
Thickness sub-membrane space / Å	1.6±0.6	2.1±0.6	1.9±0.6
Hydrocarbon thickness inner lipid leaflet neat bilayer	14.6±0.6	14.6±0.6	15.0±0.6
Hydrocarbon thickness outer lipid leaflet neat bilayer	15.6±0.5	15.7±0.4	15.7±0.4
Thickness change per leaflet after incubation	-0.1±0.1	0.0±0.1	0.0±0.1
Bilayer completeness neat bilayer	1.00±0.01	1.00±0.01	1.00±0.01
Bilayer completeness after adding avobenzone	1.00±0.01	1.00±0.01	1.00±0.01
Tetracycline			
tetracycline amount associated with bilayer (volume surface density) / $(Å^3/Å^2)$	1.0 ± 0.5	0.6 ± 0.4	1.3±0.5

Figure S21: Fresnel normalized neutron reflectivity for the measurements of the as-prepared lipid bilayer and after adding of 5 μ M tetracycline.

Figure S22: Fresnel normalized neutron reflectivity for the measurements of the as-prepared lipid bilayer and after adding of 36 μ M tetracycline.

Figure S23: Fresnel normalized neutron reflectivity for the measurements of the as-prepared lipid bilayer and after a final rinse with pure water.

Figure S24: Best-fit nSLD profiles for the measurements of the as-prepared lipid bilayer and after adding 5 μ M tetracycline.

Figure S25: Best-fit nSLD profiles for the measurements of the as-prepared lipid bilayer and after adding 36 μ M tetracycline.

Figure S26: Best-fit nSLD profiles for the measurements of the as-prepared lipid bilayer and after adding 36 μ M tetracycline.