Synthesis and characterization of silver nanoparticles embedded cellulose-gelatin based hybrid hydrogel: its utilization as dye degradation

Saruchi^a, Vaneet Kumar^{*b} Diksha Bhatt^c, Sadanand Pandey^{*d} and Ayman A. Ghfar^e

^aDepartment of Biotechnology, CT Institute of Pharmaceutical Sciences (CTIPS), CT Group of

Institutions, Shahpur Campus Jalandhar, Punjab, India.

^{b,c}School of Natural Science, CT University, Ludhiana, Punjab, India

^dDepartment of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro,

Gyeongsan, Gyeongbuk, 38541, Republic of Korea

^eDepartment of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh

11451, Saudi Arabia

*Corresponding Author: vaneet2106@gmail.com, sadanand.au@gmail.com,

3.2.4.. Thermal Behavior

Table S1:Thermal behavior of cellulose, gelatin, cellulose-gelatin backbone and C-G-g-poly(AA)

Sample			TGA				DTA		DTG	
	IDT	I st stage disintegration,° C (%wt. loss)		2 nd stage	3 rd stage	FDT, °C	Exothermic peaks at different disintegration		Disintegration	
	(°C)			disintegration,	disintegration,°	(Residue left			temperature, °C	
				°C (%wt. loss)	C (%wt. loss)	%)			(rate of wt. loss in	
							temperature (μV)		mg/min)	
							I st (°C)	2 nd (°C)	I st (°C)	2 nd (°C)
Cellulose	211.4	210.9-37	2.4	576.5-601.3	-	610	224.3	586.7	285.6	596.5
		(28.2)		(65.3)		(7.1)	(91.7)	(102.4)	(2.98)	(0.65)
Gelatin	225.2	224.8-41	8.4	-	-	417	369	-	312	-
		(78)				(21)	(72)		(4.68)	

Hybrid	239.6	239.1-375.6	563.2-602.4	-	600	279.6	601.2	299.3	600.4
backbone		(58.4)	(38.1)		(2)	(89.9)	(101.9)	(0.59)	(0.58)
C-G-g-	262.4	260.3-300.4	372.6-512.8	535.6-646°C	644	263.2	509.6	285.7	669.8
poly(AA)		(21.6)	(52.3)	(24.2)	(2)	(79.8)	(20.1)	(0.62)	(0.49)

3.3.2. XRD analysis

Figs. S1a-d: XRDs of (a) Cellulose (b) Gelatin (c) Cellulose-gelatin hybrid backbone and (d) C-G-g-Poly(AA)

3.4. Stability of synthesized AgNPs

Fig. S2: TEM image of C-G-g-poly(AA)AgNPs after six months

3.5. Catalytic evaluation of synthesized AgNPs for dyes degradation

Figs. S3a-d: The absorbance of ethidium bromide and eosin dye versus time (a,c) in the presence of NaBH₄ and (b,d) in the presence of NaBH₄ and C-G- g-poly(AA)-AgNPs