PEGylation of Goldbody: PEG-Aided Conformational Engineering of Peptides

on Gold Nanoparticles

Tiange Gao,[†]^a Yuan-Yuan Liu,[†]^a Chenxi Lou,^a Haifang Wang,^{*a} Yuanfang Liu,^{a,b} and Aoneng Cao^{*a}

^{*a.*} Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.

^{b.} Beijing National Laboratory for Molecular Sciences, College of Chemistry and

Molecular Engineering, Peking University, Beijing 100871, China.

† These authors contributed equally.

E-mails: hwang@shu.edu.cn, ancao@shu.edu.cn

Supplementary data

Table S1. Sequences and properties of the designed peptides

Peptide	Peptide sequence	pI	MW (Da)	ε (M ⁻¹ · cm ⁻¹)
Pep1	CGSTIYASYYESGHGC	5.08	1697.81	4595
Pep1m	CGSTIYASYYESGHG	5.24	1594.67	4470
Pep2	CSAWYGTLYEYDGC	3.67	1630.76	10095
Pep2m	CSAWYGTLYEYDG	3.67	1527.62	9970

Fig. S1 Scheme of the design of the PEGylated anti-lysozyme Goldbody. PEG with two terminal – SH groups is used to effectively aid the conformational engineering of the CDR fragments (purple chain) of the natural antibody on AuNPs, and the PEGylated anti-lysozyme Goldbody can specifically bind to lysozyme (HEWL).

Fig. S2 TEM images of (A) AuNP-5Pep1, (B) AuNP-5Pep1-15(HS-PEG600-COOH), (C) AuNP-5Pep1-30(HS-PEG300-COOH), and (D) AuNP-5Pep1-15(HS-PEG2000-SH).

Fig. S3 Size distributions from the TEM images of (A) AuNPs $(3.69 \pm 0.56 \text{ nm})$, (B) AuNP-5Pep1 $(4.07 \pm 0.48 \text{ nm})$, (C) AuNP-5Pep1-15(HS-PEG600-COOH) $(4.47 \pm 0.57 \text{ nm})$, (D) AuNP-5Pep1-15(HS-PEG600-SH) $(4.57 \pm 0.61 \text{ nm})$, (E) AuNP-5Pep1-30(HS-PEG300-COOH) $(4.35 \pm 0.35 \text{ nm})$, and (F) AuNP-5Pep1-15(HS-PEG2000-SH) $(4.66 \pm 0.36 \text{ nm})$.

Fig. S4 Zeta potentials of (A) AuNPs, (B) AuNP-5Pep1, (C) AuNP-5Pep1-15(HS-PEG600-COOH), and (D) AuNP-5Pep1-15(HS-PEG600-SH).

Fig. S5 TEM images of (A) AuNP-5Pep2, (B) AuNP-5Pep2-15(HS-PEG600-COOH), (C) AuNP-5Pep2-30(HS-PEG300-COOH), and (D) AuNP-5Pep2-15(HS-PEG2000-SH).

Fig. S6 Size distributions from the TEM images of (A) AuNP-5Pep2 (4.12 ± 0.26 nm), (B) AuNP-5Pep2-15(HS-PEG600-COOH) (4.40 ± 0.78 nm), (C) AuNP-5Pep2-15(HS-PEG600-SH) (4.34 ± 0.31 nm), (D) AuNP-5Pep2-30(HS-PEG300-COOH) (4.44 ± 0.31 nm), and (E) AuNP-5Pep2-15(HS-PEG2000-SH) (4.56 ± 0.46 nm). (F) UV-vis spectrum and the optical picture of the AuNP-5Pep2-15(HS-PEG600-SH) solution.

Fig. S7 Zeta-potentials of (A) AuNP-5Pep2, (B) AuNP-5Pep2-15(HS-PEG600-COOH), and (C) AuNP-5Pep2-15(HS-PEG600-SH).

Fig. S8 SPR binding kinetics of AuNP–5Pep2-15(HS-PEG600-SH) with the immobilized EGFR. Red curves are the fitting lines.