Supplementary Information

RHPS4 shifted the conformation ensemble equilibrium of Tel24 by preferentially stabilizing the (3+1) hybrid-2 conformation

Zhangqian Wang,^{a,b} Jieya Deng,^a Muhammad Umer,^c Naureen Anwar,^d Yidang Wang,^a Xingxing Dong,^a Hua Xu,^a Yi He,^a Chao Gao^{*a}

^aNational R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.

^bState Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

^cInstitute for Forest Resources and Environment of Guizhou and Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, 550025, China.

^dDepartment of Zoology, University of Narowal, Narowal, Punjab, 51600, Pakistan.

Supplementary tables and figures2
Table S1. DNA sequences used in the experiment
Figure S1. The CD spectra of different of G-quadruplexes in a solution containing 40 wt% PEG2003
Figure S2. Effects of the RHPS4 on the CD spectra of Tel24 in a solution containing 40 wt% PEG200.4
Figure S3. Effects of the RHPS4 on the CD spectra of <i>c-KIT</i> 1 in a solution containing different concentrations of PEG200
Figure S4. Topology changes of Tel24 in 10 mM Tris-HCl (pH 7.5) buffer containing 100 mM KCl duing melting
Figure S5. Benesi-Hildebrand plot of $1/(F-F0)$ versus $1/[DNA]$. The dissociation constant (K_D) value of RHPS4 and Tel24 in solutions in the absence and presence of PEG200
Figure S6. Effects of the RHPS4 on the CD spectra of Tel24 in a solution containing 20 wt% PEG200 and different concentrations of KC1

Name	Origin	Sequence(5'→3')
Tel24	Human telomere	TTAGGGTTAGGGTTAGGGTAAGGG
c-MYC Pu22	Promoter	TGAGGGTGGGTAGGGTGGGTAA
KRAS	Promoter	AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG
<i>c-KIT</i> 1	Promoter	AGGGAGGGCGCTGGGAGGAGGG

Table S1 Oligonucleotide sequences used in the experiment

Fig. S1 The CD spectra of different of G-quadruplexes in a solution containing 40 wt% PEG200. The concentration of oligonucleotide was 10 μ M.

Fig. S2 Effects of the RHPS4 on the CD spectra of Tel24 in a solution containing 40 wt% PEG200. The concentration of Tel24 was 10 μ M. The concentration of RHPS4 was 90 μ M.

Fig. S3 Effects of the RHPS4 on the CD spectra of c-KIT1 in a solution containing 30 wt% (A) and 40 wt% (B) PEG200. The concentration of c-KIT1 was 10 μ M. The concentration of RHPS4 was 90 μ M.

Fig. S4 Topology changes of Tel24 in 10 mM Tris-HCl (pH 7.5) buffer containing 100 mM KCl during melting. The concentration of Tel24 was 10 μM. The concentration of RHPS4 was 90 μM.

Fig. S5 Benesi-Hildebrand plot of 1/(F-F0) versus 1/[DNA]. The dissociation constant (K_D) value of RHPS4 and Tel24 in solutions in the absence (A) and presence (B) of PEG200 was calculated as $1.84 \pm 0.10 \mu$ M and $2.50 \pm 0.26 \mu$ M, respectively.

Fig. S6 Effects of the RHPS4 on the CD spectra of Tel24 in a solution containing 20 wt% PEG200 and different concentrations of KCl. (A) 0 mM KCl, (B) 1 mM KCl, (C) 10 mM KCl, (D) 50 mM KCl.