Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Adsorption of polycyclic aromatic hydrocarbons over CuZnFeAl-LDH modified by sodium dodecyl sulfate

Boqing LIU ^{1a}, Jingjing Cao^{1b}, Yong JIANG ^{2a}, Shichang YAN ^{3a}, Haiming HE ^{4a}, Yu SHI ^{5a}, Songsong XU ^{6a}, Jinhua LIANG^{c*}, Xiaoqian REN^{a*}

(aSchool of Chemical Engineering, Nanjing University of Technology, bSchool of Environmental Science, Nanjing Xiaozhuang University, cSchool of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 211800, Jiangsu Province, China)

1.1 Adsorption thermodynamics

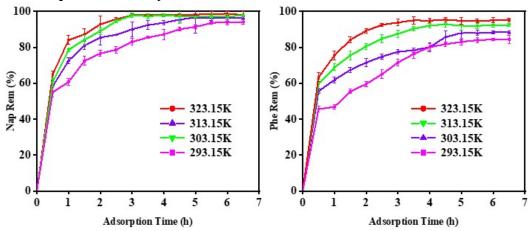


Fig. S1 The adsorption capacity of CuZnFeAl-S for (a) naphthalene and (b) phenanthrene with temperature.

1.2 Equilibrium adsorption capacity and equilibrium concentration

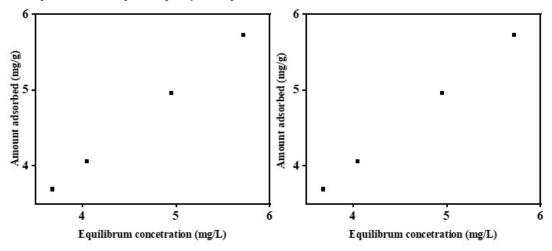


Fig. S2 Equilibrium adsorption capacity and equilibrium concentration of CuZnFeAl-S for (a) naphthalene and (b) phenanthrene adsorbents

Figure S1(a)(b) shows the adsorption performance of naphthalene and phenanthrene with temperature (from 293.15 K to 232.15 K), and Figure S2(a)(b) describes the relationship between the equilibrium adsorption capacity and the equilibrium concentration on CuZnFeAl-S, respectively.