Electronic Supplementary Information

Fundamental understanding of size and surface modification effects on r_1 relaxivity of Prussian blue nanocube@m-SiO₂: a novel targeted chemo-photodynamic theranostic agent to treat colon cancer

Panchanan Sahoo^{†,‡}, Sudip Kundu[†], Shubham Roy[⊥], S. K Sharma[⊥] Jiten Ghosh[§], Snehasis Mishra[†], Abhishek Mukherjee^{#,‡}, Chandan Kumar Ghosh^{*,†}

[†]School of Materials Science and Nanotechnology, Jadavpur University, Kolkata-700032, India

[‡]Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute, Giridih, Jharkhand, India

[⊥]Department of Physics, Jadavpur University, Kolkata-700032

[±]Eko X-Ray & Imaging Institute, 54, Jawaharlal Nehru Road, Kolkata-700071, India

[§]XRD and SEM Units, Materials Characterization and Instrumentation Division, CSIR-Central Glass and Ceramic Research Institute, India

Figure S1: Variation of particle sizes of PBNC₆₀, PBNC₆₀@m-SiO₂, PBNC₆₀@m-SiO₂@HA in aqueous medium through DLS.

Figure S2: Red shifted absorption peak due to increase in particle size of pristine PBNC from optical measurement.

Figure S3: Determination of r_1 relaxivity value of (a) PBNC₆₀ and (b) PBNC₈₀ after each step of modification in PBS.

Figure S4: Time dependent stability checking of PBNC₆₀@m-SiO₂@HA in pH 5 and 7.4.

Figure S5: Expression of caspase 3 and caspase 9 in PBNC₆₀@mSiO₂@HA@DOX (21 μ g/mL) treated NIR irradiated (10, 20 and 30 min) HCT 116 cell line.

Figure S6: Plot for *in vitro* r_1 relaxivity measurement in HCT 116 cell line after incubation with PBNC₆₀@mSiO₂@HA@DOX for 24 h.