Supercritical CO₂ assisted extraction of essential oil and naringin from *Citrus grandis* peels: *in vitro* antimicrobial activity and docking study

Thanh-Chi Mai^{1,2}*, Ngoc-Thinh Tran¹, Dinh-Tri Mai^{1,2}, Tran Thi Ngoc Mai³, Nguyen Hong Thuc Duyen⁴, Tran Nguyen Minh An⁴*, Mahboob Alam⁵, Chi-Hien Dang^{1,2}, Thanh-Danh Nguyen^{1,2}*

¹Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, District 12, Ho Chi Minh City, Vietnam.

²Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
³Institute of Applied Sciences, HUTECH University, Ho Chi Minh City, Viet Nam, 475A Dien Bien phu Street, Ward 25, Binh Thanh District, Ho Chi

Minh City, Vietnam.

⁴Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71420, Vietnam.

⁵Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju-si 780714, Gyeongsangbuk-do, Republic of Korea

Corresponding Authors: <u>maithanhchi@yahoo.com.vn</u> (T.C. Mai), <u>trannguyenminhan@iuh.edu.vn</u> (T.N. M. An), <u>ntdanh@ict.vast.vn</u> (T.D. Nguyen).

Supplementary Data

Property	Value	Comment
Molecular weight	136.13	Contain hydrogen atoms. Optimal: 100-600
Volume	167.687	Van der Waals volume
nЦΛ	0	Number of hydrogen bond acceptors.
	0	Optimal: 0–12
лUD	0	Number of hydrogen bond donors.
	0	Optimal: 0–7
nRot	1	Number of rotatable bonds. Optimal: 0–11
nRing	1	Number of rings. Optimal:0~6
MayDing	6	Number of atoms in the biggest ring.
MaxRing		Optimal: 0–18
nHet	0	Number of heteroatoms. Optimal: 1–15
fChar	0	Formal charge. Optimal: -4-~4
nRig	7	Number of rigid bonds. Optimal: 0–30
Flexibility	0.143	Flexibility = nRot/nRig
Stereocenters	1	Optimal: ≤2
TPSA	0	Topological polar surface area. Optimal: 0–140
logS	-4.239	Log of the aqueous solubility. Optimal: -4-0.5 log mol/L
logP	4.368	Log of the octanol/water partition coefficient. Optimal: 0–3
logD	3.469	logP at physiological pH 7.4. Optimal: 1–3

Table S1. Physicochemical properties of compound *d*-limonene

Property	Value	Comment
		A measure of drug-likeness based on the concept
QED	0.485	of desirability; attractive: >0.67; unattractive: 0.49~0.67; too complex: <0.34.
		Synthetic accessibility score is designed to
SAscore	3 165	estimate ease of synthesis of drug-like molecules.
SASCOL	5.105	SAscore \geq 6, difficult to synthesize; SAscore < 6,
		easy to synthesize.
		The number of sp ³ hybridized carbons/total
Fsp ³	0.6	carbon count, correlating with melting point and
		solubility. $Fsp^3 \ge 0.42$ is considered a suitable value.
MCE-18	15.0	MCE-18 stands for medicinal chemistry evolution. MCE-18 \ge 45 is
WICL-10	15.0	considered a suitable value.
		Natural-product-likeness score. This score is typically in the range of
NPscore	2.359	-5 to 5. The higher the score is, the higher the probability is that the
		molecule is an NP.
Lininski	Accepted	MW \leq 500; logP \leq 5; Hacc \leq 10; Hdon \leq 5. If two properties are out of
Rule		range, a poor absorption or permeability is possible; one property being
itale		out of range is acceptable.
Pfizer Rule	Rejected	logP > 3; TPSA < 75; compounds with a high log P (>3) and low TPSA
	Rejected	(<75) are likely to be toxic.
GSK Rule	Rejected	MW \leq 400; logP \leq 4; compounds satisfying the GSK rule may have a
	Rejected	more favorable ADMET profile.
Golden	Paiastad	$200 \le MW \le 500$; $-2 \le \log D \le 5$; compounds satisfying the Golden
Triangle	Rejected	Triangle rule may have a more favorable ADMET profile.
DAINIC	0 alorta	Pan-assay interference compounds, frequent hitters,
PAINS	0 alerts	α -screen artifacts and reactive compound.
ALARM	0 alorta	Thial reactive compounds
NMR	0 alerts	Thior reactive compounds.
BMS	0 alerts	Undesirable, reactive compounds.
Chelator	0 alerta	Chelating compounds
Rule	0 alerts	Cherating compounds.

 Table S2. Medicinal chemistry compound d-limonene.

Property Value		Comment
Caco-2		
Permeability	-4.32	Optimal: higher than -5.15 log unit
MDCK	1.0.05	Low permeability: $<2 \times 10^{-6}$ cm/s
Permeability	1.9e-05	Medium permeability: $2-20 \times 10^{-6}$ cm/s High passive permeability: $>20 \times 10^{-6}$ cm/s
Pgp-inhibitor	0.002	Category 1: inhibitor; Category 0: non-inhibitor; the output value is the probability of being Pgp-inhibitor
Pgp-substrate	0.0	Category 1: substrate; Category 0: non-substrate; the output value is the probability of being Pgp-substrate
HIA	0.003	Human intestinal absorption; Category 1: HIA+(HIA < 30%); Category 0: HIA-(HIA < 30%); the output value is the probability of being HIA+
F _{20%}	0.818	20% Bioavailability; Category 1: F20%+ (bioavailability < 20%); Category 0: F20%- (bioavailability ≥ 20%); The output value is the probability of being F20% +
F _{30%}	0.798	 30% Bioavailability; Category 1: F30% + (bioavailability < 30%); Category 0: F30% - (bioavailability ≥ 30%); The output value is the probability of being F30% +

Table S3. The absorption of compound *d*-limonene.

Property	Value	Comment
PPB	86.38%	Plasma protein binding; optimal: <90%. Drugs with high protein binding may have a low therapeutic index.
VD	86.38%	Volume distribution; optimal: 0.04–20 L/kg.
BBB		
Penetration	86.38%	Blood-brain barrier penetration; Category 1: BBB+; Category 0: BBB-; the output value is the probability of being BBB+.
Fu	9.244%	The fraction unbound in plasma; low: <5%; middle: 5~20%; high: >20%.

Table S4. The properties of the drug distribution of compound *d*-limonene.

Property	Value	Comment
CYP1A2 inhibitor	0.678	Category 1: inhibitor; Category 0: non-inhibitor; the output value is the probability of being an inhibitor.
CYP1A2 substrate	0.652	Category 1: substrate; Category 0: non-substrate; the output value is the probability of being a substrate
CYP2C19 inhibitor	0.223	Category 1: inhibitor; Category 0: non-inhibitor; the output value is the probability of being an inhibitor
CYP2C19 substrate	0.834	Category 1: substrate; Category 0: non-substrate; the output value is the probability of being a substrate
CYP2C9 inhibitor	0.06	Category 1: inhibitor; Category 0: non-inhibitor; the output value is the probability of being an inhibitor.
CYP2C9 substrate	0.804	Category 1: substrate; Category 0: non-substrate; the output value is the probability of being a substrate.
CYP2D6 inhibitor 0.02		Category 1: inhibitor; Category 0: non-inhibitor; the output value is the probability of being an inhibitor.
CYP2D6 substrate 0.874 Category 1: substrate; Category 0: non-substrate; the or value is the probability of being a substrate.		Category 1: substrate; Category 0: non-substrate; the output value is the probability of being a substrate.
CYP3A4 inhibitor	0.057	Category 1: inhibitor; Category 0: non-inhibitor; the output value is the probability of being an inhibitor.
CYP3A4 substrate	0.253	Category 1: substrate; Category 0: non-substrate; the output value is the probability of being a substrate.

Table S5. The properties of the drug metabolism of compound *d*-limonene.

Property	Value	Comment
CL	11.517	Clearance; high: >15 mL/min/kg; moderate: 5–15 mL/min/kg; low: <5 mL/min/kg.
T1/2	0.233	Category 1: long half-life; Category 0: short half-life; long half-life: >3 h; short half-life: <3 h; the output value is the probability of having a long half-life.

Table S6. The properties of the drug excretion of compound *d*-limonene.

Property	Value	Comment	
hERG Blockers 0.023		Category 1: active; Category 0: inactive; the output value is the probability of being active.	
H-HT	0.69	Human hepatotoxicity; Category 1: H-HT positive (+); Category 0: H-HT negative (-); the output value is the probability of being toxic.	
DILI	0.037	Drug-induced liver injury. Category 1: drugs with a high risk of DILI; Category 0: drugs with no risk of DILI. The output value is the probability of being toxic.	
AMES Toxicity 0.007 Category 1: AMES positive (+); Category 0: AMES nega output value is the probability of being toxic.		Category 1: AMES positive (+); Category 0: AMES negative (-); the output value is the probability of being toxic.	
Rat Oral Acute Toxicity	0.017	Category 0: low toxicity; Category 1: high toxicity; the output value is the probability of being highly toxic.	
FDAMDD 0.309 Maximum recommended daily dos Category 0: FDAMDD (-): the output value is the probabil		Maximum recommended daily dose; Category 1: FDAMDD (+); Category 0: FDAMDD (-); the output value is the probability of being positive.	
Skin Sensitization	0.355	Category 1: sensitizer; Category 0: non-sensitizer; the output value is the probability of being a sensitizer.	
Carcinogencity	0.992	Category 1: carcinogens; Category 0: non-carcinogens; the output value is the probability of being toxic.	
Eye corrosion	0.849	Category 1: corrosive; Category 0: noncorrosive; the output value is the probability of being corrosive.	
Eye irritation	0.981	Category 1: irritants; Category 0: non-irritants; the output value is the probability of being an irritant.	
Respiratory Toxicity	0.216	Category 1: respiratory toxicants; Category 0: respiratory non-toxicants; the output value is the probability of being toxic.	

Table S7. The properties of the drug toxicity of compound *d*-limonene

Property	Value	Comment
Acute Toxicity Rule	0 alerts	20 substructures; acute toxicity during oral administration
Genotoxic Carcinogenicity Rule	0 alert	117 substructures; carcinogenicity or mutagenicity
Nongenotoxic Carcinogenicity Rule	0 alerts	23 substructures; carcinogenicity through nongenotoxic mechanisms
Skin Sensitization Rule	0 alerts	155 substructures; skin irritation
Aquatic Toxicity Rule	1 alerts	99 substructures; toxicity to liquid (water)
Nonbiodegradable Rule	0 alerts	19 substructures; nonbiodegradable
SureChEMBL Rule	0 alerts	164 substructures; MedChem unfriendly status

Table S8. Toxicophore rules of compound d-limonene

Entry	Active pose	Free Energy of Binding ^[a]	$K_i^{[b]}$	The number of hydrogen bonds ^[c]	The property and bond length ^[d]
Naringin	60	-5.51	91.22	4	X:Gly301:N - Naringin (2.85 Å) X:Lys487:N-Naringin:O (2.55 Å) X:Ala496:N-Naringin:O (2.82 Å) Naringin: H - X:Lys603:O (1.87 Å)
Small ligand	83	-5.38	114	13	X:Thr 302:O-Small ligand (2.86 Å) X:Gln 348:N-Small ligand (3.11 Å) X:Ser 349:N-Small ligand (2.95 Å) X:Ser 349:O-Small ligand (2.66 Å) X:Thr 352:O-Small ligand (3.00 Å) X:Ser 401:N- Small ligand (3.06 Å) Small ligand: H-X:Glu 488:O (2.03 Å) Small ligand: H-X:Glu 488:O (2.05 Å) Small ligand: H-X:Glu 488:O (2.05 Å) Small ligand: H-X:Ala 602:O (1.88 Å) Small ligand: H-X:Ser 349:O (1.90 Å) Small ligand: H-X:Lys 603:O (2.15 Å) Small ligand: H-X:Lys 603:O (1.92 Å)
Fluconazole	87	-5.55	86.10	4	X:Thr302:N-Fluconazole:O (3.00 Å) X:Ser303:N-Fluconazole:O (3.05 Å) X:Ser349:O-Fluconazole:N (2.77Å) Fluconazole:H-X:Cys300:O (1.94 Å)

Table S9. The role results on in silico molecular docking model of Naringin and

small ligand in receptor, enzyme 2VF5 docked to enzyme 2VF5.

Table S10. The values of RMSD of naringin, small ligand in enzyme 2VF5, and

RMSD, Å	Naringin	Small ligand	Fluconazole	Pose 60	Pose 83	Pose 87 (Reference)
Naringin	0	3.911	3.453	6.186	4.254	2.581
Small ligand	3.911	0	2.924	4.331	2.483	2.098
Fluconazole	3.453	2.924	0	4.463	2.453	2.370
Pose 60	6.186	4.331	4.463	0	4.705	2.896
Pose 83	4.254	2.483	2.453	4.705	0	2.453
Pose 87	2.581	2.098	2.370	2.896	2.453	0

Fluconazole, standard drug.

Table S11. NMR	data of n aringin in DMSO- d_6	

С	Naringin						
	δc	$\delta_{\rm H}$ mult., (<i>J</i> in Hz)	δc	$\delta_{\rm H}$ mult., (<i>J</i> in Hz)	HMBC (H→C)		
	2 <i>S</i>		2 <i>R</i>				
2	78.6	5.49 (1H, <i>dd</i> , 13.2; 3.0)	78.8	5.51 (1H, <i>dd</i> , 12.6; 3.0)	C-4, C-1'		
3	42.0	2 1/2 17 (1H m H 2ag)	42.1	3.18-3.21 (1H, <i>m</i> , H-3ax)	C-4, C-1'		
		2.14-3.17 (111, <i>m</i> , 11-3cq) 2.72 (1H <i>dd</i> 13.2, 3.0 H ₋ 3ax)		2.73 (1H, dd, 13.8; 3.0, H-			
		2.72 (111, <i>uu</i> , 15.2, 5.0, 11-5 <i>a</i> x)		3eq)			
4	197.2		197.3				
5	163.0		163.0				
6	96.3	6.08 (1H, <i>d</i> , 2.4)	96.4	6.09 (1H, <i>d</i> , 2.4)	C-5, C-7, C-10		
7	164.7		164.9				
8	95.1	6.10 (1H, <i>d</i> , 2.4)	95.2	6.11 (1H, <i>d</i> , 2.4)	C-6, C-7, C-9, C-10		
9	162.8		162.9				
10	103.3		103.4				
1'	128.6		128.6				
2', 6'	128.4	7.32 (1H, <i>d</i> , 8.4)	128.5	7.33 (1H, <i>d</i> , 8.4)	C-2, C-1', C-3', C-4'		
3',5'	115.2	6.79 (1H, <i>d</i> , 8.4)	115.2	6.80 (1H, <i>d</i> , 8.4)	C-1', C-2', C-4'		
4'	157.8		157.9				
4'-OH		9.64 (1H, <i>s</i>)		9.65 (1H, <i>s</i>)	C-4'		
5-OH		12.04 (1H, <i>s</i>)		12.05 (1H, <i>s</i>)	C-5		
Glc							
1"	97.3	5.13 (1H, <i>d</i> , 7.8)	97.4	5.14 (1H, <i>d</i> , 7.8)	C-7		
2"	77.1	3.39 (1H, <i>m</i>)	77.1	3.39 (1H, <i>m</i>)	C-1"		
3"	76.9	3.41 (1H, <i>m</i>)	76.8	3.41 (1H, <i>m</i>)	C-2", C-5"		
4"	71.8	3.19 (1H, <i>m</i>)	71.8	3.19 (1H, <i>m</i>)	C-3",C-5"		
5"	76.1	3.40 (1H, <i>m</i>)	76.2	3.40 (1H, <i>m</i>)	C-4", C-6"		
6"	60.4	3.40 (1H, <i>m</i>)	60.4	3.40 (1H, <i>m</i>)	C-5"		
		3.65 (1H, <i>m</i>)		3.65 (1H, <i>m</i>)			
Rha							
1'''	100.4	5.09 (1H, <i>d</i> , 1.8)	100.5	5.10 (1H, <i>d</i> , 1.8)	C-2"		
2""	69.6	3.17 (1H, <i>m</i>)	69.6	3.17 (1H, <i>m</i>)	C-1'''		
3	70.4	3.67 (1H, <i>m</i>)	70.4	3.67 (1H, <i>m</i>)	C-2'''', C-4'''		
4'''	70.5	3.30 (1H, <i>m</i>)	70.5	3.30 (1H, <i>m</i>)	C-3"", C-5""		
5'''	68.3	3.69 (1H, <i>m</i>)	68.3	3.69 (1H, <i>m</i>)	C-4"", C-6""		
6'''	18.0	1.14 (1H, <i>d</i> , 6,0)	18.0	1.15 (1H, <i>d</i> , 6,0)	C-5""		

Figure S1. Chemical structure of naringin

Figure S2. The key HMBC correlations of naringin

Figure S3. ¹H-NMR spectrum copy of naringin

Figure S4. ¹³C-NMR spectrum copy of naringin

Figure S6. HMBC spectrum copy of naringin

User Spectra

Figure S7. HRMS spectrum copy of naringin

Figure S8. GCMS spectrum copy of HDEO

Figure S9. GCMS spectrum copy of SCEO

Figure S10. Supercritical CO₂ instrument made in Institute of Chemical Technology (ICT)-Vietnam

Academy of Science and Technology (VAST) - Vietnam