Electronic Supplementary Information

Colorimetric screening of elevated urinary mercury levels by a novel Hg²⁺-selective probe of resorufin phosphinothioate

Myung Gil Choi, Byung Hoon Yun, Hyeong Min Kim, Sangdoo Ahn,* Suk-Kyu Chang*

Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea

Contents

Experimental details

- Table S1.
 Summary of the optical urinary mercury sensing systems
- Fig. S1. (a) UV-vis and (b) fluorescence spectra of MP-1 and its Hg²⁺ signaling product 1.
- **Fig. S2.** UV–vis spectra of **MP-1** in the presence of thiophilic metal ions with or without citrate as metal ion scavenger.
- **Fig. S3.** Changes in absorbance ratio (A_{576}/A_{457}) of **MP-1** in the presence of common anions.
- **Fig. S4.** Changes in absorbance ratio (A_{576}/A_{457}) of Hg²⁺ signaling by **MP-1** in the presence of common anions as background.
- Fig. S5. Changes in fluorescence intensity at 592 nm of MP-1 as plotted by intensity ratio I/I_0 in the presence of common anions.
- **Fig. S6.** ¹H NMR spectrum of (a) **MP-1**, (b) **MP-1** + Hg²⁺, and (c) resorufin sodium salt in DMSO- d_6 .
- Fig. S7. EI mass spectrum for the Hg^{2+} signaling product of MP-1.
- **Fig. S8.** HPLC evidence of Hg^{2+} signaling by **MP-1**.
- **Fig. S9.** Time-dependent Hg^{2+} signaling of **MP-1** plotted by change in absorbance ratio (A_{576}/A_{457}).
- Fig. S10. Effects of representative urine components urea and creatine on Hg^{2+}

signaling of **MP-1** expressed by absorbance ratio (A_{576}/A_{457}) .

Fig. S11.	Calibration curve of Hg ²⁺ analysis in artificial urine by probe MP-1 as				
	plotted by absorbance ratio (A_{576}/A_{457}) .				
Fig. S12.	Calibration curve expressed by color channel levels of image for Hg^{2+}				
	signaling in artificial urine.				
Fig. S13.	¹ H NMR spectrum of MP-1 in DMSO- d_6 (600 MHz).				
Fig. S14.	¹³ C NMR spectrum of MP-1 in DMSO- d_6 (150 MHz).				
Fig. S15.	High-resolution FAB mass spectrum of MP-1.				

Experimental details

1. General

Resorufin sodium salt was procured from Merck KGaA. Dimethylthiophosphinoyl chloride (97.0%) was obtained from TCI. Artificial urine (Sigmatrix Urine Diluent) was purchased from Merck KGaA. Other chemicals (metal salts (97% ~ 99%) and spectroscopic grade solvents (DMF: 99.8%, dichloromethane: 99.8%, acetonitrile: 99.9%) were obtained from Merck KGaA. UV–vis and fluorescence spectra were acquired using Scinco S-3100 and FS-2 spectrophotometers, respectively. High-resolution mass spectrometry (HRMS) data with fast atom bombardment (FAB) ionization were collected using a JEOL JMS-700 mass spectrometer. High-performance liquid chromatography (HPLC) experiments were performed with a Yong In YL9100 Plus HPLC System. Column chromatography was carried out using silica gel (Merck, 240 mesh).

2. Estimation of detection limit

The Hg²⁺ detection limit was estimated following the IUPAC guidelines $(3s_{blk}/m)$ using a UV–vis spectrophotometer, where s_{blk} is the standard deviation of the absorbance ratio at 576 and 457 nm (A_{576}/A_{457}) of the probe solution (5.0 µM, n = 12) and m is the slope of the titration plot.^{S1}

Material	Condition	Signal	Interference tested	Dilution ratio ^[a]	Detection limit (nM)	Ref
OCH3 HN NO ₂ O ₂ N OCH3 OCH3	HEPES buffer (3 mM) /acetonitrile (99:1, v/v)	Colorimetry	Metal ions	0.003	27	S2
DNA-Gold nanoparticles	pH 7.5 phosphate buffer	Colorimetry	Metal ions	0.1	0.01	S3
DNA-Gold nanoclusters	pH 6.0 phosphate buffer	Fluorescence	Metal ions	0.3	83	S4
Carbon dots	aqueous solutions	Fluorescence	Metal ions	-	201	S5
	90 % HEPES buffer /DMSO (9:1, <i>v/v</i>)	Colorimetry and Fluorescence	Metal ions	0.1	7.4	S 6
s s s	aqueous solution	Fluorescence	Metal ions	0.01	19	S7
$\begin{array}{c} & & \\$	aqueous solution with neutral pH	Fluorescence	Metal ions	0.01	0.8	S8
H ₃ C _p /S	pH 7.4 PBS with 20%	Colorimetry and	Metal ions and	0.5	12	This
H ₃ C 0 ~ 0 ~ 0	acetonitrile	Fluorescence	anions			work

 Table. S1. Summary of the optical urinary mercury sensing systems

[a] A dilution ratio is the ratio of the volume of urine solution in a total volume of a measuring sample.

Fig. S1. (a) UV–vis and (b) fluorescence spectra of MP-1 and its Hg²⁺ signaling product 1. $[MP-1] = [1] = 5.0 \mu M$, [citrate] = 5.0 mM, [PBS 7.4] = 10 mM in aqueous solution containing 20% (ν/ν) acetonitrile. For (b), $\lambda_{ex} = 492$ nm.

Fig. S2. UV–vis spectra of MP-1 in the presence of thiophilic metal ions with or without citrate as metal ion scavenger. [MP-1] = 5.0 μ M, [Mⁿ⁺] = 100 μ M, [citrate] = 5.0 mM, [PBS 7.4] = 10 mM in aqueous solution containing 20% (*v/v*) acetonitrile.

Fig. S3. Changes in absorbance ratio (A_{576}/A_{457}) of **MP-1** in the presence of common anions. [**MP-1**] = 5.0 μ M, [Hg²⁺] = [Aⁿ⁻] = 100 μ M, [citrate] = 5.0 mM, [PBS 7.4] = 10 mM in aqueous solution containing 20% (*v*/*v*) acetonitrile. Number of measurements (*n*) = 3.

Fig. S4. Changes in absorbance ratio (A_{576}/A_{457}) of Hg²⁺ signaling by **MP-1** in the presence of common anions as background. [**MP-1**] = 5.0 μ M, [Hg²⁺] = [Aⁿ⁻] = 100 μ M, [citrate] = 5.0 mM, [PBS 7.4] = 10 mM in aqueous solution containing 20% (*v*/*v*) acetonitrile. Number of measurements (*n*) = 3.

Fig. S5. Changes in fluorescence intensity at 592 nm of **MP-1** as plotted by intensity ratio I/I_0 in the presence of common anions. [**MP-1**] = 5.0 µM, [Hg²⁺] = [Aⁿ⁻] = 100 µM, [citrate] = 5.0 mM, [PBS 7.4] = 10 mM in aqueous solution containing 20% (v/v) acetonitrile. $\lambda_{ex} = 492$ nm. Number of measurements (n) = 3.

Fig. S6. ¹H NMR spectrum of (a) **MP-1**, (b) **MP-1** + Hg²⁺, and (c) resorufin sodium salt in DMSO- d_6 . [**MP-1**] = [resorufin sodium salt] = 5.0 mM. For (b), the spectrum (**MP-1** + Hg²⁺) was obtained using a mixture of **MP-1** (5.0 mM) and Hg(ClO₄)₂ (10.0 mM) in DMSO- d_6 .

Fig. S7. EI mass spectrum for the Hg^{2+} signaling product of MP-1.

Fig. S8. HPLC evidence of Hg²⁺ signaling by MP-1. The middle chromatogram (MP-1 + Hg²⁺) was obtained for the signaling reaction product (condition: [MP-1] = 5.0μ M, [Hg²⁺] = 100 μ M, [citrate] = 5.0μ M, [PBS 7.4] = 10 mM in aqueous solution containing 20% (ν/ν) acetonitrile). Eluent: 50% aq. acetonitrile, column: reversed phase column C18 (Sunfire, $4.6 \times 150 \mu$ M, flow rate = 1.0μ M/min.

Fig. S9. Time-dependent Hg²⁺ signaling of **MP-1** plotted by change in absorbance ratio (A_{576}/A_{457}) . [**MP-1**] = 5.0 µM, [Hg²⁺] = 100 µM, [citrate] = 5.0 mM, [PBS 7.4] = 10 mM in aqueous solution containing 20% (v/v) acetonitrile.

Fig. S10. Effects of representative urine components urea and creatine on Hg²⁺ signaling of **MP-1** expressed by absorbance ratio (A_{576}/A_{457}). [**MP-1**] = 5.0 µM, [Hg²⁺] = 100.0 µM, [urea] = 178 mM, [creatine] = 7.6 mM, [citrate] = 5.0 mM, [PBS 7.4] = 10 mM in aqueous solution containing 20% (v/v) acetonitrile. Number of measurements (n) = 3.

Fig. S11. Calibration curve of Hg²⁺ analysis in artificial urine by probe **MP-1** as plotted by absorbance ratio (A_{576}/A_{457}) . [**MP-1**] = 5.0 µM, [Hg²⁺] = 0–3.0 µM, [citrate] = 5.0 mM, [PBS 7.4] = 10 mM in aqueous solution containing 20% (*v*/*v*) acetonitrile. The regions marked in blue and red indicate the neurological symptom and fatal zones, respectively. Number of measurements (*n*) = 3.

Fig. S12. Calibration curve expressed by color channel levels of image for Hg²⁺ signaling in artificial urine. [**MP-1**] = 5.0 μ M, [Hg²⁺] = 0–3.0 μ M, [citrate] = 5.0 mM, [PBS 7.4] = 10 mM in aqueous solution containing 20% (ν/ν) acetonitrile. Number of measurements (n) = 3.

Fig. S13. ¹H NMR spectrum of MP-1 in DMSO- d_6 (600 MHz).

Fig. S14. ¹³C NMR spectrum of MP-1 in DMSO- d_6 (150 MHz).

Fig. S15. High-resolution FAB mass spectrum of MP-1.

References.

S1. D. C. Harris, in Quantitative Chemical Analysis, 8th ed., Freeman, New York, 2010, pp. 103–105.

- S2. A. Kumar, D. Kumar and M. Chhibber, ChemistrySelect, 2020, 5, 13738–13747.
- S3. M. Rana, M. Balcioglu, N. M. Robertson, M. S. Hizir, S. Yumakc and M. V. Yigit, *Chem. Sci.*, 2017, **8**, 1200–1208.
- S4. S. Zhu, Y. Zhuo, H. Miao, D. Zhong and X. Yang, Luminescence, 2015, 30, 631-636.

S5. J. He, H. Zhang, J. Zou, Y. Liu, J. Zhuang, Y. Xiao, B. Lei, Biosens. Bioelectron., 2016, 79, 531-535.

- S6. P. Singh and P. Sharma, J. Photochem. Photobiol. A-Chem., 2021, 408, 113096.
- S7. C. Li, Q. Niu, J. Wang, T. Wei, T. Li, J. Chen, X. Qin, Q. Yang, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020, 233, 118208.

S8. H. Tan, Y. Zhang, Y. Chen, Sens. Actuator B-Chem., 2011, 156, 120-125.