Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

<Electronic Supplementary Information>

Insight into systematic formation of hexafluorosilicate during crystallization via selfassembly in glass vessel

Dongwon Kim,^a Jihun Han,^a Ok-Sang Jung,^{*a} and Young-A Lee^{*b}

^aDepartment of Chemistry, Pusan National University, Busan 46241, Republic of Korea E-mail: oksjung@pusan.ac.kr ^bDepartment of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea E-mail: ylee@jbnu.ac.kr

	$[(SiF_6)_2 @Cu_3 L^1_4](SiF_6) \cdot 16CH_3 OH$	$[(SiF_6)@Zn_2L^2_4](SiF_6)\cdot 2C_4H_8O\cdot 4CH_2Cl_2$
Formula	$C_{216}H_{168}Cu_3F_{18}N_{24}O_{36}Si_3$	$C_{60}H_{54}Cl_4F_6N_6O_{13}SiZn$
$M_{ m w}$	4292.62	1416.35
Cryst. sys.	Monoclinic	Tetragonal
Space group	<i>C</i> 2	P4/n
<i>a</i> (Å)	38.961(8)	20.713(2)
<i>b</i> (Å)	21.921(4)	20.713(2)
<i>c</i> (Å)	23.987(5)	15.855(1)
α (°)	90	90
β (°)	116.69(3)	90
γ (°)	90	90
$V(\text{\AA}^3)$	18304(8)	6803(1)
Ζ	2	4
$ ho (\mathrm{g~cm^{-3}})$	0.779	1.383
$\mu \text{ (mm}^{-1}\text{)}$	0.281	0.615
F(000)	4422	2904
Independent reflections (R_{int})	32740 (0.0749)	6691 (0.0807)
GooF	0.786	1.037
Absolute structure parameter	0.020(5)	-
Final R indices [I>2o(I)]	$R_1 = 0.0412, wR_2 = 0.0906$	$R_1 = 0.0633, wR_2 = 0.1956$
R indices (all data)	$R_1 = 0.1158, wR_2 = 0.1100$	$R_1 = 0.0963, wR_2 = 0.2327$
Largest diff. peak and hole $(e/Å^3)$	0.224 and -0.244	1.500 and -0.620

Fig. S1 IR spectra for L¹ (a), $[(SiF_6)_2@Cu_3L^1_4](SiF_6) \cdot 16CH_3OH$ using *Method 1* (b), $[(SiF_6)_2@Cu_3L^1_4](SiF_6) \cdot 16CH_3OH$ using *Method 2* (c), $[(SiF_6)_2@Cu_3L^1_4](SiF_6) \cdot 16CH_3OH$ using *Method 3* (d), and $[(SiF_6)_2@Cu_3L^1_4](SiF_6) \cdot 16CH_3OH$ using *Method 4* (e).

Fig. S4 ¹H NMR spectra for L^1 (a), $[(SiF_6)_2@Cu_3L^1_4](SiF_6) \cdot 16CH_3OH$ (b), for L^2 (c), and $[(SiF_6)@Zn_2L^2_4](SiF_6) \cdot 2C_4H_8O \cdot 4CH_2Cl_2$ (d).

Fig. S5 The packing diagram represent the structure of $[(SiF_6)_2@Cu_3L_4^1](SiF_6)\cdot 16CH_3OH$ (a), and $[(SiF_6)@Zn_2L_4^2](SiF_6)\cdot 2C_4H_8O\cdot 4CH_2Cl_2$ (b).

Fig. S6 ¹⁹F NMR spectra for $[(SiF_6)_2@Cu_3L^1_4](SiF_6) \cdot 16CH_3OH$ using *Method 1* (a), $[(SiF_6)_2@Cu_3L^1_4](SiF_6) \cdot 16CH_3OH$ using *Method 2* (b), $[(SiF_6)_2@Cu_3L^1_4](SiF_6) \cdot 16CH_3OH$ using *Method 3* (c), and $[(SiF_6)@Zn_2L^2_4](SiF_6) \cdot 2C_4H_8O \cdot 4CH_2Cl_2$ (d). The chemical shifts were measured relative to a C_6H_5F internal standard.