Supplementary Information

Triangulo-{Er^{III}₃} complex showing field supported slow magnetic relaxation

Mamo Gebrezgiabher^{a,b}, Sören Schlittenhardt^c, Cyril Rajnák^b, Juraj Kuchár^d, Assefa Sergawie^a, Juraj Černák^d, Mario Ruben^{c,f,g}, Madhu Thomas^{a,*} and Roman Boča^{b,*}

^aDepartment of Industrial Chemistry, College of Applied Sciences, Nanotechnology Excellence Center,

Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia.

^bDepartment of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius 91701 Trnava, Slovakia.

^cInstitute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

^dDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, 041 80 Košice, Slovakia.

^eInstitute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

^fCentre Européen de Science Quantique (CESQ); Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg, 8 allée Gaspard Monge BP 70028 67083 Strasbourg Cedex, France.

Fig. S1. IR spectrum of complex 1.

Table S1. Results of the Continuous Shape Measures calculations

S H A P E v2.1: Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu

OP-8	1	D_8h	Octagon
HPY-8	2	$C_7 v$	Heptagonal pyramid
HBPY-8	3	D_6h	Hexagonal bipyramid
CU-8	4	Oh	Cube
SAPR-8	5	D ₄ d	Square antiprism
TDD-8	6	D ₂ d	Triangular dodecahedron
JGBF-8	7	D ₂ d	Johnson gyrobifastigium J26
JETBPY-8	8	D_3h	Johnson elongated triangular bipyramid J14
JBTPR-8	9	C_2v	Biaugmented trigonal prism J50
BTPR-8	10	C_2v	Biaugmented trigonal prism
JSD-8	11	D_2d	Snub diphenoid J84
TT-8	12	Td	Triakis tetrahedron
ETBPY-8	13	D_3h	Elongated trigonal bipyramid

a) ErD_8 in 1

Structure 1

[ML₈] OP-8 HPY-8 HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8 TT-8 ETBPY-8

Er1, 31.934, 22.220, 16.116, 10.187, 2.852, **0.909**, 14.964, 29.632, 3.389, 2.877, 3.518, 10.830, 24.556

Er2, 31.824, 22.070, 15.266, 9.505, 2.908, **0.540**, 14.735, 29.004, 2.930, 2.532, 2.878, 10.365, 24.265

Er3, 30.623, 22.103, 15.261, 11.111, 1.871, **0.921**, 13.624, 28.313, 2.634, 1.989, 2.808, 11.830, 24.295

The polyhedra are close to triangular dodecahedrons

b) ErD_8 in $[\operatorname{Er}_3\operatorname{Cl}_3(o\operatorname{-van}\operatorname{Br})_3(\operatorname{OH})_2(\operatorname{CH}_3\operatorname{OH})_3]\operatorname{Cl} \cdot 3\operatorname{CH}_3\operatorname{OH}^1$

Structure [ML₈] OP-8 HPY-8 HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8 TT-8 ETBPY-8

Er1p*,30.146, 22.412, 16.318, 10.369, 2.082, 0.629, 14.266, 29.362, 2.278, 1.695, 2.921, 11.135, 23.937

Er2p*, 30.320, 21.582, 16.475, 10.406, 2.183, 1.077, 15.133, 29.372, 2.683, 2.042, 3.733, 11.036, 23.245

Er3p*, 31.941, 22.932, 16.363, 10.690, 2.954, 0.986, 15.242, 29.401, 3.593, 2.496, 4.048, 11.049, 23.816

The polyhedra are close to triangular dodecahedrons

Table S2 Possible hydrogen bonds in 1 [Å, °].

D-H···A	D-H	H···A	D···A	DHA	
010–H100…Cl2 ⁱ	0.84	2.47	3.268(3)	161	
O11–H11O…Cl3	0.84	2.48	3.274(3)	158	
O21–H21A····Cl2 ⁱⁱ	0.83	2.25	3.041(4)	159	
O21–H21B····Cl2 ⁱ	0.84	2.38	3.212(4)	170	
O22–H22A…Cl3	0.84	2.40	3.175(4)	154	
O22–-H22B…O35A	0.84	1.84	2.669(8)	168	
O23–H23A····Cl3 ⁱⁱⁱ	0.84	2.26	3.100(4)	176	
O23–H23B…Cl3	0.84	2.33	3.157(4)	166	

O24–H24A…Cl1 ^{iv}	0.84	2.32	3.161(3)	177
O24–H24B…O34	0.84	1.88	2.724(7)	175
$O25-H25A\cdots Cl2^{i}$	0.84	2.305	3.126(3)	165
$O25-H25B\cdots Cl4B^{i}$	0.84	2.34	3.173(5)	171
O25-H25B…O31 ⁱ	0.84	1.78	2.609(9)	169

Symmetry codes: i: 1-x, -1/2+y, 1/2-z; ii: -1/2+x, 1-y, z; iii: 1-x, 1-y, 1-z; iv: 1/2+x, 1-y, z.

 Table S3. Crystal data and structure refinement for 1.

Empirical formula	C ₂₄ H ₃₃ O _{25.47} Cl ₄ Er ₃
Formula weight	1372.613
Temperature/K	95.15
Crystal system	monoclinic
Space group	I2/a
a/Å	17.1520(3)
b/Å	17.8706(4)
c/Å	30.2439(6)
α/°	90
β/°	97.7617(18)
$\gamma/^{\circ}$	90
Volume/Å ³	9185.3(3)
Ζ	8
$\rho_{calc}g/cm^3$	1.985
µ/mm ⁻¹	5.743
F(000)	5230.3
Crystal	yellow block
size/mm ³	$0.204 \times 0.125 \times 0.118$
Radiation / Å	Mo Kα (λ = 0.71073)
2Θ range for data collection/°	4.08 - 53.00
Index ranges	$-23 \le h \le 22$
	$-23 \le k \le 23$
	$-25 \le 1 \le 40$

	-			
Reflections collected	25470			
Independent reflections	9623 [$R_{int} = 0.0241$, $R_{sigma} =$			
	0.0344]			
Data/restraints/parameters	9623/17/613			
Goodness-of-fit on F ²	1.067			
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0303, wR_2 = 0.0674$			
Final R indexes [all data]	$R_1 = 0.0389, wR_2 = 0.0710$			
Largest diff. peak/hole / e.Å ⁻³	1.84/-1.53			

Fig. S2. View on hydrogen bonding system in **1** formed by O-H…O and O-H…Cl hydrogen bonds. Symmetry codes: i: 1-x, y-0.5, 0.5-z; ii: x-0.5, 1-y, z; iii: 1-x, 1-y, 1-z; iv: 0.5+x, 1-y, z.

Fig.S3. View on the chain-like arrangement of trinuclear $\{Er_3\}$ entities linked by hydrogen bonds of the O-H…Cl type. Only hydrogen atoms involved in the propagation of chains are shown.

Fig. S4. Temperature dependence of the AC susceptibility for 1 at $B_{DC} = 0.3$ T depending upon the frequency of the AC field.

The Debye equation for AC susceptibility can be extended to the two-set Debye model

$$\chi(\omega) = \chi_{S} + \frac{\chi_{T1} - \chi_{S}}{1 + (i\omega\tau_{1})^{1-\alpha_{1}}} + \frac{\chi_{T2} - \chi_{T1}}{1 + (i\omega\tau_{2})^{1-\alpha_{2}}}$$

which splits into the in-phase component

$$\chi'(\omega) = \chi_{S} + (\chi_{T1} - \chi_{S}) \frac{1 + (\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2)}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2) + (\omega\tau_{1})^{2-2\alpha_{1}}} + (\chi_{T2} - \chi_{T1}) \frac{1 + (\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2)}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2) + (\omega\tau_{2})^{2-2\alpha_{2}}}$$

and the out-of-phase component

$$\chi''(\omega) = (\chi_{T1} - \chi_S) \frac{(\omega \tau_1)^{1-\alpha_1} \cos(\pi \alpha_1 / 2)}{1 + 2(\omega \tau_1)^{1-\alpha_1} \sin(\pi \alpha_1 / 2) + (\omega \tau_1)^{2-2\alpha_1}} + (\chi_{T2} - \chi_{T1}) \frac{(\omega \tau_2)^{1-\alpha_2} \cos(\pi \alpha_2 / 2)}{1 + 2(\omega \tau_2)^{1-\alpha_2} \sin(\pi \alpha_2 / 2) + (\omega \tau_2)^{2-2\alpha_2}}$$

with the constraint for the isothermal and adiabatic susceptibilities $\chi_S < \chi_{T1} < \chi_{T2}$ in order to get positive contributions from each primitive component.

B/T	χs	Хlf	$lpha_{LF}$	$\tau_{\rm LF}/{ m S}$	ℋнғ	$lpha_{HF}$	$ au_{ m HF}/\mu s$	X _{LF}
0.1	112	116	.06	0.195	125	.39	239	0.30
0.2	79	98	.31	0.618	111	.23	413	0.61
0.3	55	87	.38	1.46	99	.16	504	0.74
0.4	39	64	.37	1.09	74	.15	542	0.74
0.5	29	56	.42	2.00	63	.10	560	.80

Table S4. Fitted AC susceptibility data at T = 2.0 K ^a

^a AC susceptibility components in unit of 10⁻⁶ m³ mol⁻¹ [SI].

T/K	χs	$\chi_{ t LF}$	$lpha_{LF}$	$ au_{LF}/S$	$\chi_{ extsf{hf}}$	$lpha_{HF}$	$ au_{ m HF}/ m ms$ a	X _{LF}
2.00	54	86	.29	1.23	98	.24	0.62	0.73
2.25	51	80	.19	0.73	92	.38	0.86	0.71
2.50	51	79	.24	0.63	89	.36	0.67	0.74
2.75	50	73	.20	0.47	83	.44	0.80	0.69
3.00	50	69	.17	0.42	78	.50	1.00	0.66
3.25	50	66	.15	0.37	75	.50	1.26	0.65
3.50	49	61	.09	0.35	71	.60	2.86	0.54
3.75	49	59	.07	0.32	67	.60	4.11	0.55
4.00	49	57	.05	0.30	64	.58	4.51	0.52
4.25	48	55	.03	0.29	62	.59	8.49	0.50
4.50	48	53	.01	0.29	59	.55	8.53	0.52

Table S5. Fitted AC susceptibility data at B_{DC} = 0.3 T

^a Note, the high-frequency relaxation time on heating <u>is not decreasing</u> (as usual) but increasing! This is a "reciprocating thermal behaviour".

Fig. S5 X-ray powder diffraction patterns of 1 (simulated and experimental).

Fig.S6. Thermogravometric analysis curve for complex 1.

Reference

1 X. Yang, R. A. Jones and M. J. Wiester, *Dalt. Trans.*, 2004, **3**, 1787–1788.