Supporting Information

A Green Synthesis and Antibacterial Activity of Ferrocene-based Thiazole

Derivatives in Choline chloride/Glycerol Eutectic Solvent

Di Zhao^a, Yanying Liu^b, Yang Li,*a and Yu Chen*c

^a College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, China.

^b Research Institute of Jinzhou Petrochemical Company, Jinzhou 121000, China

^c School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang,

110016, China.

E-mail: bhuzh@163.com; 569180398@qq.com

Table of contents

1. GeneralinformationS	\$2
2. General procedure for the preparation of the substrates 2l-u S	2
3. Preparation of the DES ChCl/Gly S	32
4. General procedure for the synthesis of the targeted products 3a-u	52
5. Characterization data of the products 3a-u	S2
6. ¹ H NMR and ¹³ C NMR spectra of the products 3a-u	58
7. Antibacterial activity assayS	\$29
8. References	29

1. General information

The chemicals used in this work were obtained from Energy Chemical and were used without purification. Melting points were determined by use of a WRS-1B melting-point apparatus and were uncorrected. The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on an Agilent 400-MR spectrometer using CDCl₃ or DMSO- d_6 as solvent. The reported chemical shifts (δ values) are given in parts per million downfield from tetramethylsilane (TMS) as the internal standard (NMR abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet, *J* = coupling constant). The mass spectra were determined using a MSD VL ESI1 spectrometer. HRMS (ESI) data were acquired on an Bruker Customer micrOTOF-Q 125 high-resolution mass spectrometer. The mass spectra (MS) were determined using a MSD VL ESI1 spectrometer. Elemental analyses were carried out on an EA 2400II elemental analyzer (PerkinElmer, Waltham, MA). The progress of reactions was monitored by TLC on silica gel GF254 using ethyl acetate/petroleum ether (1:2) as the eluent.

2. General procedure for the preparation of the substrates 2l-u

These compounds 2l-u were synthesized by Friedel–Crafts thioamidation reaction according to the literature method^[1]: The respective 1-alkylindole or 9-alkylcarbazole (10.0 mmol) was added to methanesulfonic acid (15 mL) under ice-cooling bath. To the solution was then added potassium thiocyanate (1.12 g, 11.5 mmol) slowly with stirring. The resulting reaction mixture was stirred at room temperature for about 5 h. After the completion of the reaction (TLC eluent for reaction monitorization), the mixture was poured into cold water (30 mL). The resulting precipitate was collected by filtration and recrystallized from ethyl acetate to give the corresponding products of carbothioamides 2l-u with analytically pure.

3. Preparation of the DES ChCl/Gly

The procedure for the preparation of the DES ChCl/Gly based on the method of literature^[2]: A mixture of choline chloride (14.0 g, 0.1 mol) and glycerol (18.4 g, 0.2 mol) was heated up to 100 °C in a flask with stirring for 2h until a clear solution was produced. After cooling to room temperature and vacuum drying for 5 h, the resulting DES ChCl/Gly was sealed for later use.

4. General procedure for the synthesis of the targeted products 3a-u

Bromoacetylferrocene 1 (0.5 mmol, 0.154 g) and respective thioureas (2a-k), 1-alkylindole-3- (2l-p) or 9-alkylcarbazole-3-carbothioamides (2q-u) (0.55 mmol) was mixed in 6 mL of the ChCl/Gly (1 : 2 mol/mol). The resulting reaction mixture was stirred at 85 °C for 6~8 hours (as monitored by TLC). After the reaction was completed, the mixture was diluted with an equal volume of water and extracted using dichloromethane (DCM) (3 x 5 mL). The deep eutectic solvent could be easily isolated after removing H₂O from the aqueous layer under vacuum, and could be further used for the next run reaction. The combined DCM layer was dried over Na₂SO₄ followed by evaporation of the solvent under reduced vacuum to afford a crude solid product, which was further purified by recrystallization from ethanol to give the corresponding pure compounds 3a-u.

5. Characterization data of products 3a-u

N-Phenyl-4-ferrocenylthiazol-2-amine (3a)

Orange solid, yield 82%, mp 161.1-162.0 °C; IR (KBr): v 3102, 3074, 1621, 1578, 1525, 1493, 1110 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 4.32 (s, 5H, Fc-H), 4.44 (s, 2H, Fc-H), 4.81 (s, 2H, Fc-H), 6.25 (s, 1H, ArH), 7.34 (t, *J* = 8.0 Hz,

1H, ArH), 7.40 (d, J = 8.0 Hz, 2H, ArH), 7.49 (t, J = 8.0 Hz, 2H, ArH), 11.68 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ : 67.12, 70.37, 70.58, 71.67, 94.48, 121.04, 127.40, 130.22, 136.51, 141.29, 167.33. MS (ESI, m/z): 361.2 [M + H]⁺. HRMS (ESI, m/z) calcd for C₁₉H₁₆FeN₂NaS [M + Na]⁺: 383.0276, found 383.0269. Anal. Calcd for C₁₉H₁₆FeN₂S: C, 63.35; H, 4.48; N, 7.78. Found: C, 63.52; H, 4.54; N, 7.61.

4-Ferrocenyl-N-(o-tolyl)thiazol-2-amine (3b)

Yellow solid, yield 79%, mp 167.1-168.5 °C; IR (KBr): v 3200, 2879, 1619, 1585, 1549, 1404, 1300, 1057 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 2.44 (s, 3H, Me), 4.37 (s, 5H, Fc-H), 4.45 (s, 2H, Fc-H), 4.76 (s, 2H, Fc-H), 6.14 (s, 1H,

ArH), 7.20-7.25 (m, 2H, ArH), 7.29 (d, J = 7.6 Hz, 1H, ArH), 7.35 (d, J = 7.6 Hz, 1H, ArH), 11.03 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ : 18.84, 67.48, 70.60, 70.65, 71.92, 95.00, 109.99, 122.60, 127.61, 128.60, 132.09, 133.37, 135.54, 141.44. MS (ESI, m/z): 375.1 [M + H]⁺. HRMS (ESI, m/z) calcd for C₂₀H₁₈FeN₂NaS [M + Na]⁺: 397.0432, found 397.0423. Anal. Calcd for C₂₀H₁₈FeN₂S: C, 64.18; H, 4.85; N, 7.48. Found: C, 64.31; H, 4.77; N, 7.23.

4-Ferrocenyl-N-(p-tolyl)thiazol-2-amine (3c)

Yellow solid, yield 87%, mp 159.3-160.1 °C; IR (KBr): v 3109, 2924, 1627, 1599, 1541, 1454, 1326, 1115 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 2.36 (s, 3H, Me), 4.30 (s, 5H, Fc-H), 4.40 (s, 2H, Fc-H), 4.79 (s, 2H, Fc-H), 6.23 (s, 6Hz - 2Hz - 4Hz), 7.26 (d, L= 7.6 Hz - 2Hz - 4Hz), 11.40 (c, 1Hz - 2Hz - 3Hz), 13.6 NMP

1H, ArH), 7.24 (d, J = 7.6 Hz, 2H, ArH), 7.26 (d, J = 7.6 Hz, 2H, ArH), 11.40 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ :21.25, 67.60, 70.65, 71.82, 95.65, 121.67, 130.87, 133.94, 137.73, 141.13, 168.07. MS (ESI, *m/z*): 375.2 [M + H]⁺. HRMS (ESI, *m/z*) calcd for C₂₀H₁₈FeN₂NaS [M + Na]⁺: 397.0432, found 397.0437. Anal. Calcd for C₂₀H₁₈FeN₂S: C, 64.18; H, 4.85; N, 7.48. Found: C, 64.01; H, 4.88; N, 7.65.

N-(4-Methoxyphenyl)-4-Ferrocenylthiazol-2-amine (3d)

Yellow solid, yield 91%, mp 168.3-169.1 °C; IR (KBr): v 3071, 2735, 1616, 1575, 1526, 1509, 1474, 1328, 1128 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 3.82 (s, 3H, OMe), 4.29 (s, 5H, Fc-H), 4.40 (s, 2H, Fc-H), 4.76

(s, 2H, Fc-H), 6.17 (s, 1H, ArH), 6.95 (d, J = 7.6 Hz, 2H, ArH), 7.30 (d, J = 7.6 Hz, 2H, ArH), 11.19 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ : 55.73, 67.14, 70.41, 71.88, 94.58, 115.40, 124.29, 129.37, 141.16, 159.05, 169.02. MS (ESI, m/z): 391.1 [M + H]⁺. HRMS (ESI, m/z) calcd for C₂₀H₁₈FeN₂NaOS [M + Na]⁺: 413.0382, found 413.0374. Anal. Calcd for C₂₀H₁₈FeN₂OS: C, 61.55; H, 4.65; N, 7.18. Found: C, 61.68; H, 4.60; N, 7.29.

N-(4-Ethylphenyl)-4-ferrocenylthiazol-2-amine (3e)

Yellow solid, yield 85%, mp 139.5-141.2 °C; IR (KBr): v 3073, 2964, 2817, 1619, 1576, 1258, 1119 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 1.24 (t, J = 7.6 Hz, 3H, CH₂CH₃), 2.68 (q, J = 7.6 Hz, 2H, CH₂CH₃), 4.31 (s, 5H, Fc-H), 4.42 (s, 2H, Fc-H), 4.80 (s, 2H, Fc-H), 6.21 (s, 1H, ArH), 7.27 (d, J = 8.0 Hz, 2H, ArH), 7.30 (d, J = 8.0 Hz, 2H, ArH), 11.44 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ : 15.42, 28.45, 67.48, 70.62, 70.69, 71.87, 94.93, 121.65, 129.63, 134.11, 141.20, 143.97, 167.89. MS (ESI, *m/z*): 389.2 [M + H]⁺. HRMS (ESI, *m/z*) calcd for C₂₁H₂₀FeN₂NaS [M + Na]⁺: 411.0589, found 411.0597. Anal. Calcd for C₂₁H₂₀FeN₂S: C, 64.95; H, 5.19; N, 7.21. Found: C, 65.09; H, 5.39; N, 7.06.

N-(4-Fluorophenyl)-4-Ferrocenylthiazol-2-amine (3f)

Yellow solid, yield 76%, mp 145.3-145.7 °C; IR (KBr): v 3073, 2911, 1618, 1544, 1504, 1214, 1164 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 4.32 (s, 5H, Fc-H), 4.43 (s, 2H, Fc-H), 4.79 (s, 2H, Fc-H), 6.22 (s, 1H, ArH), 7.17 (d, J = 8.0 Hz, 2H, ArH), 7.39 (d, J = 8.0 Hz, 2H, ArH), 11.52 (s, 1H,

NH); ¹³C NMR (100 MHz, CDCl₃) δ : 62.83, 66.00, 66.99, 90.22, 112.83 (J = 92.0 Hz), 119.74 (J = 34.4 Hz), 127.80, 136.80, 155.39, 157.87, 163.69. MS (ESI, m/z): 379.2 [M + H]⁺. HRMS (ESI, m/z) calcd for C₁₉H₁₅FFeN₂NaS [M + Na]⁺: 401.0182, found 401.0185. Anal. Calcd for C₁₉H₁₅FFeN₂S: C, 60.33; H, 4.00; N, 7.41. Found: C, 60.14; H, 4.15; N, 7.37.

N-(4-Chlorophenyl)-4-Ferrocenylthiazol-2-amine (3g)

Orange solid, yield 80%, mp 177.3-177.8 °C; IR (KBr): v 3330, 2850, 1596, 1559, 1520, 1307, 1263, 1213 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 4.16 (s, 5H, Fc-H), 4.41 (s, 2H, Fc-H), 4.90 (s, 2H, Fc-H), 7.09 (s, 1H, ArH), 8.02 (d,

J = 8.0 Hz, 2H, ArH), 8.36 (d, J = 8.4 Hz, 2H, ArH), 11.10 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) $\delta : 67.19, 68.93, 69.63, 102.50, 110.81, 116.45, 126.08, 140.45, 147.54, 161.40.$ MS (ESI, m/z): 395.1, 397.0 [M + H]⁺. HRMS (ESI, m/z) calcd for C₁₉H₁₅³⁵ClFeN₂NaS [M + Na]⁺: 416.9887, found 416.9895. Anal. Calcd for C₁₉H₁₅ClFeN₂S: C, 57.82; H, 3.83; N, 7.10. Found: C, 57.64; H, 3.75; N, 6.91.

N-(4-Bromophenyl)-4-Ferrocenylthiazol-2-amine (3h)

Yellow solid, yield 83%, mp 162.7- 164.2 °C; IR (KBr): v 3073, 2713, 1618, 1551, 1521, 1487, 1072 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 4.20 (s, 5H, Fc-H), 4.31 (s, 2H, Fc-H), 4.69 (s, 2H, Fc-H), 6.06 (s, 1H, ArH), 7.14

(d, J = 8.0 Hz, 2H, ArH), 7.42 (d, J = 8.0 Hz, 2H, ArH), 11.51 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ : 68.57, 71.31, 71.48, 95.61, 109.99, 120.68, 123.57, 133.57, 135.46, 141.76, 167.26. MS (ESI, m/z): 438.9, 441.1 [M + H]⁺. HRMS (ESI, m/z) calcd for C₁₉H₁₅⁷⁹BrFeN₂NaS [M + Na]⁺: 460.9381, found 460.9372. Anal. Calcd for C₁₉H₁₅BrFeN₂S: C, 51.96; H, 3.44; N, 6.38. Found: C, 51.74; H, 3.56; N, 6.19.

2-((4-Ferrocenylthiazol-2-yl)amino)phenol (3i)

Yellow solid, yield 74%, mp 188.6-189.6 °C; IR (KBr): v 3074, 2968, 1612, 1523, 1392, 1143 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ : 4.20 (s, 5H, Fc-H), 4.42 (s, 2H, Fc-H), 4.86 (s, 2H, Fc-H), 5.69 (s, 1H, OH), 6.92 (s, 1H,

ArH) 6.94-6.98 (m, 1H, ArH), 7.07 (d, J = 7.6 Hz, 1H, ArH), 7.18 (t, J = 7.6 Hz, 1H, ArH), 7.59 (d, J = 7.6 Hz, 1H, ArH), 10.53 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ : 67.16, 69.84, 70.02, 75.27, 100.19, 117.07, 120.12, 123.64, 126.05, 127.88, 141.55, 150.34, 168.15. MS (ESI, m/z): 376.8 [M + H]⁺. HRMS (ESI, m/z) calcd for C₁₉H₁₆FeN₂NaOS [M + Na]⁺: 399.0225, found 399.0217. Anal. Calcd for C₁₉H₁₆FeN₂OS: C, 60.65; H, 4.29; N, 7.45. Found: C, 60.89; H, 4.25; N, 7.57.

N-Methyl-4-ferrocenylthiazol-2-amine (3j)

Red solid, yield 76%, mp 144.0-144.7 °C; IR (KBr): v 3200, 2879, 1585, 1549, 1404, 1300, 1157 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 2.91 (s, 3H, Me), 4.02 (s, 5H, Fc-H), 4.17 (s, 2H, Fc-H), 4.57 (s, 2H, Fc-H), 5.65 (s, 1H, NH), 6.28 (s, 1H,

ArH); ¹³C NMR (100 MHz, CDCl₃) δ : 32.39, 66.71, 68.46, 69.45, 80.67, 98.14, 109.99, 150.85. MS (ESI, *m/z*): 299.1 [M + H]⁺. HRMS (ESI, *m/z*) calcd for C₁₄H₁₄FeN₂NaS [M + Na]⁺: 321.0120, found 321.0113. Anal. Calcd for C₁₄H₁₄FeN₂S: C, 56.39; H, 4.73; N, 9.39. Found: C, 56.51; H, 4.66; N, 9.57.

N-(Benzo[d][1,3]dioxol-5-yl)-4-ferrocenylthiazol-2-amine (3k)

Yellow solid, yield 81%, mp 175.2-175.8 °C; IR (KBr): v 3083, 1995, 1612, 1523, 1392, 1143 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 4.26 (s, 5H, Fc-H), 4.39 (s, 2H, Fc-H), 4.75 (s, 2H, Fc-H), 6.03 (s, 2H, OCH₂O), 6.20

(s, 1H, ArH) 6.81-6.84 (m, 3H, ArH), 11.25 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ : 66.99, 70.29, 70.48, 71.77, 94.56, 102.19, 104.09, 109.01, 116.08, 130.45, 141.20, 147.29, 148.90, 168.78. MS (ESI, *m/z*): 405.2 [M + H]⁺. HRMS (ESI, *m/z*) calcd for C₂₀H₁₆FeN₂O₂NaS [M + Na]⁺: 427.0175, found 427.0167. Anal. Calcd for C₂₀H₁₆FeN₂O₂S: C, 59.42; H, 3.99; N, 6.93. Found: C, 59.67; H, 4.13; N, 7.12.

2-(1-Methyl-1H-indol-3-yl)-4-ferrocenylhiazole (31)

Yellow solid, yield 74%, mp 122.0-122.8 °C; IR (KBr): v 3107, 2934, 1618, 1545, 1467, 1373, 1358, 1179; ¹H NMR (400 MHz, CDCl₃) δ: 3.76 (s, 3H, CH₃), 4.04 (s, 5H, Fc-H), 4.24 (s, 2H, Fc-H), 4.80 (s, 2H, Fc-H), 6.86 (s, 1H, ArH), 7.24-7.30 (m, 3H, ArH), 7.75 (s, 1H, ArH), 8.29 (d, *J* = 8.4 Hz, 1H,

ArH); ¹³C NMR (100 MHz, CDCl₃) δ : 33.21, 67.29, 68.75, 69.57, 106.84, 109.70, 109.98, 121.14, 122.73, 125.41, 125.47, 129.12, 137.29, 154.48, 161.94. MS (ESI, *m/z*): 399.1 [M + H]⁺. HRMS (ESI, *m/z*) calcd for C₂₂H₁₈FeN₂NaS [M + Na]⁺: 421.0438, found 421.0422. Anal. Calcd for C₂₂H₁₈FeN₂S: C, 66.34; H, 4.56; N, 7.03. Found: C, 66.56; H, 4.37; N, 7.21.

2-(1-Ethyl-1H-indol-3-yl)-4-ferrocenylthiazole (3m)

Yellow solid, yield 71%, mp 116.4-118.2 °C; IR (KBr): v 3104, 2969, 1611, 1541, 1468, 1395, 1335, 1195; ¹H NMR (400 MHz, CDCl₃) δ : 1.54 (t, J = 7.2 Hz, 3H, CH₂CH₃), 4.11 (s, 5H, Fc-H), 4.25 (q, J = 6.8 Hz, 2H, CH₂CH₃), 4.31 (s, 2H, Fc-H), 4.87 (s, 2H, Fc-H), 6.96 (s, 1H, ArH), 7.29-

7.33 (m, 2H, ArH), 7.39 (t, J = 7.6 Hz, 1H, ArH), 7.82 (s, 1H, ArH), 8.39 (d, J = 8.4 Hz, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ : 15.39, 41.39, 67.26, 68.69, 69.54, 106.82, 109.74, 109.96, 121.06, 121.25, 122.58, 125.58, 127.37, 136.34, 154.48, 161.98. MS (ESI, m/z): 413.0 [M + H]⁺. HRMS (ESI, m/z) calcd for C₂₃H₂₀FeN₂NaS [M + Na]⁺: 435.0594, found 435.0609. Anal. Calcd for C₂₃H₂₀FeN₂S: C, 67.00; H, 4.89; N, 6.79. Found: C, 66.84; H, 5.04; N, 6.65

2-(1-Butyl-1H-indol-3-yl)-4-ferrocenylthiazole (3n)

Yellow solid, yield 68%, mp 94.6-96.2 °C; IR (KBr): v 3117, 2974, 1615, 1543, 1469, 1395, 1356, 1175; ¹H NMR (400 MHz, CDCl₃) δ : 0.89 (t, J = 7.2 Hz, 3H, CH₃), 1.32 (sext, J = 7.2 Hz, 2H, CH₂), 1.82 (quint, J = 7.2 Hz, 2H, CH₂), 4.06 (s, 5H, Fc-H), 4.10 (t, J = 7.2 Hz,

2H, CH₂), 4.26 (s, 2H, Fc-H), 4.82 (s, 2H, Fc-H), 6.85 (s, 1H, ArH), 7.22-7.25 (m, 2H, ArH), 7.31 (d, J = 7.6 Hz, 1H, ArH), 7.69 (s, 1H, ArH), 8.32 (d, J = 8.0 Hz, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ : 11.70, 18.16, 30.18, 44.49, 65.29, 66.74, 67.62, 104.86, 107.83, 107.96, 118.97, 119.24, 120.52, 123.48, 125.99, 134.61, 152.49, 159.94. MS (ESI, m/z): 441.3 [M + H]⁺. HRMS (ESI, m/z) calcd for C₂₅H₂₄FeN₂NaS [M + Na]⁺: 463.0907, found 463.0893. Anal. Calcd for C₂₅H₂₄FeN₂S: C, 68.18; H, 5.49; N, 6.36. Found: C, 68.29; H, 5.64; N, 6.11.

2-(1-Benzyl-1H-indol-3-yl)-4-ferrocenylthiazole (30)

Yellow solid, yield 76%, mp 167.5-168.4 °C; IR (KBr): v 3115, 2970, 1618, 1543, 1470, 1396, 1352, 1172; ¹H NMR (400 MHz, DMSO-d6) δ: 4.08 (s, 5H, Fc-H), 4.35 (s, 2H, Fc-H), 4.90 (s, 2H, Fc-H), 5.54 (s, 2H, ArCH₂), 7.23-7.32 (m, 5H, ArH), 7.35 (d, *J* = 8.0 Hz, 2H, ArH),

7.44 (s, 1H, ArH), 7.58 (d, J = 8.0 Hz, 1H, ArH), 8.33 (s, 1H, ArH), 8.36 (d, J = 8.4 Hz, 1H, ArH); ¹³C NMR (100 MHz, DMSO-d6) δ : 49.79, 67.38, 68.96, 69.65, 80.86, 108.22, 110.78, 111.45, 121.26, 121.56, 123.07, 125.43, 127.61, 127.99, 129.07, 130.08, 136.77, 138.02, 154.32, 161.78. MS (ESI, *m/z*): 475.1 [M + H]⁺. HRMS (ESI, *m/z*) calcd for C₂₈H₂₂FeN₂NaS [M + Na]⁺: 497.0751, found 497.0768. Anal. Calcd for C₂₈H₂₂FeN₂S: C, 70.89; H, 4.67; N, 5.91. Found: C, 71.10; H, 4.53; N, 6.15.

2-(1-(4-Chlorobenzyl)-1H-indol-3-yl)-4-ferrocenylthiazole (3p)

Yellow solid, yield 73%, mp 177.7-179.5 °C; IR (KBr): v 3114, 2968, 1617, 1541, 1474, 1393, 1337, 1174; ¹H NMR (400 MHz, CDCl₃) δ: 4.05 (s, 5H, Fc-H), 4.25 (s, 2H, Fc-H), 4.81 (s, 2H, Fc-H), 5.28 (s, 2H, ArCH₂), 6.91 (d,

J = 8.4 Hz, 1H, ArH), 7.03 (d, J = 8.4 Hz, 2H, ArH), 7.19 (d, J = 8.4 Hz, 2H, ArH), 7.22-7.27 (m, 3H, ArH), 7.78 (s, 1H, ArH), 8.35 (d, J = 7.6 Hz, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ : 49.88, 67.30, 68.79, 69.56, 107.04, 109.99, 110.12, 121.39, 121.52, 123.12, 125.71, 128.12, 128.18, 129.09, 133.79, 135.01, 136.73, 154.49, 158.27. MS (ESI, *m/z*): 509.1, 511.0 [M + H]⁺. HRMS (ESI, *m/z*) calcd for C₂₈H₂₁³⁵ClFeN₂NaS [M + Na]⁺: 531.0361, found 531.0383. Anal. Calcd for C₂₈H₂₁ClFeN₂S: C, 66.09; H, 4.16; N, 5.51. Found: C, 66.19; H, 4.34; N, 5.28.

2-(9-Methyl-9H-carbazol-2-yl)-4-ferrocenylthiazole (3q)

Yellow solid, yield 72%, mp 163.2-164.1 °C; IR (KBr): v 3052, 2961, 1611, 1596, 1541, 1452, 1382, 1234, 1153; ¹H NMR (400 MHz, CDCl₃) δ : 8.60 (s, 1H, ArH), 8.12 (d, *J* = 7.6 Hz, 1H, ArH), 8.03 (d, J = 7.6 Hz, 1H, ArH), 8.03 (d, J = 7.6 Hz, 1H), 1H (d, J = 7.6 Hz,

1H, ArH), 7.44 (t, J = 7.6 Hz, 1H, ArH), 7.34 (d, J = 7.6 Hz, 2H, ArH), 7.23 (t, J = 8.4 Hz, 1H, ArH), 6.81 (s, 1H, ArH), 5.02 (s, 2H, Fc-H), 4.49 (s, 2H, Fc-H), 4.24 (s, 5H, Fc-H), 3.80 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ : 29.37, 68.39, 70.42, 71.42, 108.63, 108.77, 110.22, 118.82, 119.46, 120.72, 122.82, 123.00, 124.76, 125.25, 126.22, 141.51, 141.91, 155.53, 168.41. MS (ESI, *m/z*): 449.2 [M + H]⁺. HRMS (ESI, *m/z*) calcd for C₂₆H₂₀FeN₂NaS [M + Na]⁺: 471.0594, found 471.0611. Anal. Calcd for C₂₆H₂₀FeN₂S: C, 69.65; H, 4.50; N, 6.25. Found: C, 69.49; H, 4.37; N, 6.42.

2-(9-Ethyl-9H-carbazol-2-yl)-4-ferrocenylthiazole (3r)

Yellow solid, yield 68%, mp 149.2-150.3°C; IR (KBr): v 3103, 2966, 1619, 1598, 1545, 1455, 1376, 1233, 1157; ¹H NMR (400 MHz, CDCl₃) δ : 1.49 (t, J = 6.8 Hz, 3H, CH₂CH₃), 4.40 (s, 5H, Fc-H), 4.43 (q, J = 6.8

Hz, 2H, C<u>H</u>₂CH₃), 4.45 (d, J=2.0 Hz, 2H, Fc-H), 4.98 (d, J=2.0 Hz, 2H, Fc-H), 7.02 (s, 1H, ArH), 7.31 (t, J = 7.6 Hz, 1H, ArH), 7.44-7.48 (m, 2H, ArH), 7.53 (t, J = 7.6 Hz, 1H, ArH), 8.15 (d, J = 7.6 Hz, 1H, ArH), 8.23 (d, J = 7.2 Hz, 1H, ArH), 8.74 (s, 1H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ : 14.13, 38.01, 68.17, 68.56, 69.97, 70.91, 108.84, 109.00, 109.97, 119.16, 121.07, 123.25, 123.44, 124.94, 125.52, 126.38, 140.72, 141.13, 155.79, 168.60. MS (ESI, m/z): 463.0 [M + H]⁺. HRMS (ESI, m/z) calcd for C₂₇H₂₂FeN₂NaS [M + Na]⁺: 485.0751, found 485.0739. Anal. Calcd for C₂₇H₂₂FeN₂S: C, 70.13; H, 4.80; N, 6.06. Found: C, 69.94; H, 4.71; N, 6.17.

2-(9-Butyl-9H-carbazol-2-yl)-4-ferrocenylthiazole (3s)

Orange solid, yield 65%, mp 107.8-108.7 °C; IR (KBr): v 3118, 2959, 1610, 1594, 1541, 1458, 1366, 1237, 1161; ¹H NMR (400 MHz, CDCl₃) δ : 0.88 (t, J = 7.2 Hz, 3H, CH₃), 1.30-1.38 (sext, J= 7.2 Hz, 2H, CH₂), 1.81 (quint, J= 7.2 Hz, 2H, CH₂), 4.16 (s, 5H, Fc-H), 4.26 (t,

 $J = 7.2 \text{ Hz}, 2\text{H}, C\text{H}_2\text{)}, 4.39 \text{ (s, 2H, Fc-H)}, 4.94 \text{ (s, 2H, Fc-H)}, 6.88 \text{ (s, 1H, ArH)}, 7.22 \text{ (t, } J = 8.0 \text{ Hz}, 1\text{ H}, \text{ArH)}, 7.34-7.37 \text{ (m, 2H, ArH)}, 7.42 \text{ (t, } J = 8.0 \text{ Hz}, 1\text{ H}, \text{ArH)}, 8.03 \text{ (d, } J = 8.0 \text{ Hz}, 1\text{ H}, \text{ArH)}, 8.12 \text{ (d, } J = 7.6 \text{ Hz}, 1\text{ H}, \text{ArH}), 8.62 \text{ (s, 1H, ArH)}; {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta : 13.92, 20.57, 31.13, 43.06, 67.94, 69.72, 70.64, 82.19, 108.92, 109.03, 109.78, 118.91, 119.35, 120.79, 122.90, 123.06, 124.71, 125.14, 126.12, 140.96, 141.44, 155.52, 168.42. \text{ MS} (ESI,$ *m*/*z*): 491.1 [M + H]⁺. HRMS (ESI,*m*/*z*) calcd for C₂₉H₂₆FeN₂NaS [M + Na]⁺: 513.1064 , found 513.1078. Anal. Calcd for C₂₉H₂₆FeN₂S: C, 71.02; H, 5.34; N, 5.71. Found: C, 71.19; H, 5.28; N, 5.53.

2-(9-Benzyl-9H-carbazol-2-yl)-4-ferrocenylthiazole (3t)

Yellow solid, yield 70%, mp 161.4-161.9 °C; IR (KBr): v 3109, 2924, 1621, 1599, 1541, 1454, 1385, 1238, 1161; ¹H NMR (400 MHz, CDCl₃) δ : 4.09 (s, 5H, Fc-H), 4.32 (s, 2H, Fc-H), 4.88 (s, 2H, Fc-H), 5.49 (s, 2H, CH₂), 6.96 (s, 1H, ArH), 7.08 (d, *J* = 8.4 Hz, 1H, ArH), 7.18-7.26 (m, 3H, ArH), 7.34 (t, *J* = 7.6 Hz, 2H, ArH), 7.40 (t,

 $J = 7.6 \text{ Hz}, 1\text{H}, \text{ArH}, 8.04 \text{ (d}, J = 8.0 \text{ Hz}, 1\text{H}, \text{ArH}), 8.71 \text{ (s}, 1\text{H}, \text{ArH}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta :$ 42.54, 66.63, 66.69, 68.28, 68.88, 107.55, 107.59, 109.70, 117.76, 118.01, 119.72, 122.15, 122.21, 123.51, 124.60, 124.81, 125.69, 127.92, 129.00, 132.70, 138.91, 139.37, 156.14, 166.77. MS (ESI, *m/z*): 525.2 [M + H]⁺. HRMS (ESI, *m/z*) calcd for $C_{32}H_{24}\text{FeN}_2\text{NaS}$ [M + Na]⁺: 547.0907, found 547.0896. Anal. Calcd for $C_{32}H_{24}\text{FeN}_2\text{S}$: C, 73.28; H, 4.61; N, 5.34. Found: C, 73.51; H, 4.70; N, 5.13.

2-(9-(4-Chlorobenzyl)-9H-carbazol-2-yl)-4-ferrocenylthiazole (3u)

Yellow solid, yield 66%, mp 178.0-178.7 °C; IR (KBr): v 3120, 2955, 1617, 1597, 1549, 1450, 1378, 1235, 1163; ¹H NMR (400 MHz, DMSO- d_6) δ : 4.08 (s, 5H, Fc-H), 4.36 (s, 2H, Fc-H), 4.93 (s, 2H, Fc-H), 5.74 (s, 2H, CH₂), 7.21 (d, J = 8.4 Hz, 2H, ArH), 7.31 (d,

J = 8.4 Hz, 1H, ArH), 7.36 (d, J = 7.6 Hz, 2H, ArH), 7.50 (t, J = 7.6 Hz, 1H, ArH), 7.60 (s, 1H, ArH), 7.69 (d, J = 8.0 Hz, 1H, ArH), 7.79 (d, J = 8.4 Hz, 1H, ArH), 8.11 (d, J = 8.0 Hz, 1H, ArH), 8.88 (d, J = 8.4 Hz, 1H, ArH), 8.82 (s, 1H, ArH); ¹³C NMR (100 MHz, DMSO- d_6) $\delta : 45.48$, 67.43, 69.02, 69.70, 80.61, 110.37, 110.55, 111.03, 118.92, 120.25, 121.45, 122.70, 123.11, 124.94, 125.48, 127.03, 129.04, 132.36, 136.97, 141.09, 141.47, 155.38, 167.64. MS (ESI, m/z): 559.0, 561.1 [M + H]⁺. HRMS (ESI, m/z) calcd for C₃₂H₂₃³⁵CIFeN₂NaS [M + Na]⁺: 581.0518, found 581.0531. Anal. Calcd for

 $C_{32}H_{23}ClFeN_2S:\ C,\ 68.77;\ H,\ 4.15;\ N,\ 5.01.\ Found:\ :\ C,\ 68.92;\ H,\ 4.24;\ N,\ 4.89.$

Fig. S2 ¹³C NMR spectrum of **3a**

Fig. S4 ¹H NMR spectrum of **3b**

Fig. S8 ¹³C NMR spectrum of **3d**

Fig. S10 ¹³C NMR spectrum of **3e**

Fig. S12 ¹³C NMR spectrum of **3f**

Fig. S14 ¹³C NMR spectrum of **3g**

Fig. S16 ¹³C NMR spectrum of **3h**

Fig. S18 ¹³C NMR spectrum of **3i**

Fig. S20 ¹³C NMR spectrum of **3**j

Fig. S26 ¹³C NMR spectrum of **3m**

Fig. S28 ¹³C NMR spectrum of **3n**

Fig. S30 ¹³C NMR spectrum of **30**

Fig. S34 ¹³C NMR spectrum of **3**q

Fig. S36 ¹³C NMR spectrum of **3r**

Fig. S42 ¹³C NMR spectrum of **3u**

7. Antibacterial activity assay

All these newly-synthesized compounds **3a-u** herein were screened for their potential in vitro antibacterial activities against *Bacillus subtilis* (*B. subtilis*) [CMCC (B) 63501], *Staphylococcus aureus* (S. aureus) [CMCC (B) 26003], *Escherichia coli* (E. coli) [CMCC (B) 44102] and *Pseudomonas aeruginosa* (P. aeruginosa) [CMCC (B) 10104] by the broth microdilution assay. Each of the test compounds was dissolved in DMSO and then was serially diluted in different concentrations at 2-fold dilutions (250, 125, 62.5, 31.25, 15.625, 7.8125 μ g/mL) to determine the MICs. Ciprofloxacin was used as the reference standard.

8. References

- [1] S. Aki, T. Fujioka, M. Ishigami and J. Minamikawa, Bioorg. Med. Chem. Lett., 2002, 12, 2317.
- [2] S. Perrone, M. Capua, F. Messa, A. Salomone and L. Troisi, Tetrahedron, 2017, 73, 6193.