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Fig. S1. The thermal conductivity and density of the Al2O3 filled composites under 

different filling contents.

Fig. S2. (a) The tap density of graphite powders from formulations No. 1 - No. 10, (b) the 

apparent density of No. 1 - No. 10 composites.
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Table S1

The specific percentage ratio of G-31, G-13 and G-3 in different formulations

Mass fraction/%
number

G-31 G-13 G-3

1 31 46 23

2 45 28 27

3 25 60 15

4 55 30 15

5 50 10 40

6 20 40 40

7 20 20 60

8 100 0 0

9 0 100 0

10 0 0 100

Appendix S1: Detailed computing process of calculation method No. 2

Step 1: Data processing. 

Mostly，the particle size distribution of powders conforms to lognormal 

distribution, which meets the following relationship

𝑝𝜇,𝜎(𝑥) = { 1
2𝜋𝜎𝑥

𝑒
‒

(𝑙𝑛𝑥 ‒ 𝜇)2

2𝜎2
  , 𝑥 > 0,

0                           , 𝑥 ≤ 0.
� (1)
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where µ and σ are the parameters which need to be regressed. In the experiment, the 

cumulative volume frequency curve of the corresponding particle size can be obtained 

directly by using the laser particle size analyzer. However, the parameters  and  in the 𝜇 𝜎

distribution are usually not obtained directly. 

Here, it is not recommended to directly call the parameter regression of lognormal 

distribution function for particle size distribution through Origin or MATLAB software. 

The raw data of the -th kind of powder obtained by laser particle size analyzer is volume 𝑚

fraction  in particle diameter intervals . While the {𝑥(𝑚)
𝑖 } 𝑛

𝑖 = 1 {[𝐷(𝑚)
𝑖 ,𝐷 (𝑚)

𝑖 + 1]} 𝑛
𝑖 = 0

distribution of  is not uneven so direct calculation will cause large deviation. {𝑥(𝑚)
𝑖 } 𝑛

𝑖 = 1

We perform nonlinear least squares regression about ,  on the volume {𝜇𝑚} 𝑘
𝑚 = 1 {𝜎𝑚} 𝑘

𝑚 = 1

fraction  as below:{𝑥(𝑚)
𝑖 } 𝑛

𝑖 = 1

𝑚𝑖𝑛𝜇,𝜎 
1
2

𝑛

∑
𝑖 = 1[𝐷 (𝑚)

𝑖 + 1

∫
𝐷(𝑚)

𝑖

𝑝𝜇,𝜎(𝑥)𝑑𝑥 ‒  𝑥(𝑚)
𝑖 ]2. (2)

Denote

𝐹𝑖(𝜇,𝜎) =

𝐷 (𝑚)
𝑖 + 1

∫
𝐷(𝑚)

𝑖

𝑝𝜇,𝜎(𝑥)𝑑𝑥 ‒  𝑥(𝑚)
𝑖 , 𝑖 = 1,2,⋯,𝑛. (3)

Then, Eq. 2 it is equivalent to the following form:

𝑚𝑖𝑛𝜇,𝜎 𝑓(𝜇,𝜎) ≜
1
2

‖𝐹(𝜇,𝜎)‖2. (4)

where . Here, we solve parameters  and 𝐹(𝜇,𝜎) = (𝐹1(𝜇,𝜎),𝐹2(𝜇,𝜎),...,𝐹𝑛(𝜇,𝜎) ) {𝜇𝑚} 𝑘
𝑚 = 1

 by Levenberg Marquardt method.{𝜎𝑚} 𝑘
𝑚 = 1

The derivation of Levenberg Marquardt method for Eq. 4 are as follows:



5

∇𝐹(𝜇,𝜎) = (∂𝐹
∂𝜇

,
∂𝐹
∂𝜎) (5)

where  and  are both  vector. When calculating the parameters of the -th 

∂𝐹
∂𝜇

∂𝐹
∂𝜎 𝑛 × 1 𝑚

powder ( ), for the -th data ( ),𝑚 = 1, 2,…, 𝑘 𝑖 𝑖 = 1, 2,…, 𝑛

∂𝐹𝑖

∂𝜇
(𝜇,𝜎) =

∂
∂𝜇[𝐷 (𝑚)

𝑖 + 1

∫
𝐷(𝑚)

𝑖

1
2𝜋𝜎𝑥

𝑒
‒

(𝑙𝑛𝑥 ‒ 𝜇)2

2𝜎2
𝑑𝑥 ‒  𝑥(𝑚)

𝑖 ]
=

∂
∂𝜇[ 1

2𝜋𝜎

𝑙𝑛𝐷 (𝑚)
𝑖 + 1 ‒ 𝜇

2𝜎

∫
𝑙𝑛𝐷(𝑚)

𝑖 ‒ 𝜇

2𝜎

𝑒 ‒ 𝑦2
𝑑𝑦 ]

=
1

2𝜋𝜎(𝑒𝑥𝑝
‒

(𝑙𝑛𝐷 (𝑚)
𝑖 + 1 ‒ 𝜇)2

2𝜎2
‒ 𝑒𝑥𝑝

‒
(𝑙𝑛𝐷(𝑚)

𝑖 ‒ 𝜇)2

2𝜎2 )

(6)

Similarly， 

∂𝐹𝑖

∂𝜎
(𝜇,𝜎) =

1

2𝜋𝜎2[(𝑙𝑛𝐷(𝑚)
𝑖 ‒ 𝜇)𝑒𝑥𝑝

‒
(𝑙𝑛𝐷(𝑚)

𝑖 ‒ 𝜇)2

2𝜎2
‒ (𝑙𝑛𝐷 (𝑚)

𝑖 + 1 ‒ 𝜇)𝑒𝑥𝑝
‒

(𝑙𝑛𝐷 (𝑚)
𝑖 + 1 ‒ 𝜇)2

2𝜎2 ]
(7)

Moreover, the gradient of objective function  is𝑓(𝜇,𝜎)

∇𝑓(𝜇,𝜎) = ∇𝐹(𝜇,𝜎)𝑇𝐹(𝜇,𝜎) (8)

Table S2 gives the algorithms for solving distribution parameter , {𝜇𝑚} 𝑘
𝑚 = 1

. The results of  and  of corresponding powders are shown in Table S3.{𝜎𝑚} 𝑘
𝑚 = 1 𝜇 𝜎
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Table S2 

Algorithm of data processing

Algorithm 1: Solving parameters  and {𝜇𝑚} 𝑘
𝑚 = 1, {𝜎𝑚} 𝑘

𝑚 = 1 {𝑝𝑚} 𝑘
𝑚 = 1

(a) For a fixed  ( ), we give the initial point , a constant 𝑚 𝑚 = 1,2,⋯,𝑘 (𝜇(0),𝜎(0))

,  and precision parameter , let ;𝜌 ∈ (0,1) 𝛿 ∈ (0,1 2) 𝜖 > 0 𝑠 = 0

(b) If , then we got , turn to Step (e);‖∇𝑓(𝜇(𝑠),𝜎(𝑠))‖𝐹 ≤ 𝜖 (𝜇(𝑠),𝜎(𝑠))

Else, Solve Levenberg-Marquardt linear equations:

[∇𝐹(𝜇(𝑠),𝜎(𝑠))𝑇∇𝐹(𝜇(𝑠),𝜎(𝑠)) + 𝜆𝑠𝐼]𝑑 + ∇𝐹(𝜇(𝑠),𝜎(𝑠))𝑇∇𝐹(𝜇(𝑠),𝜎(𝑠)) = 0
(9)

to get the direction  (where  is a parameter to promise the coefficient 𝑑(𝑠) 𝜆𝑠 > 0

matrix is positive and thus the solution is unique)

(c) Find the step  to be the largest number in  satisfy:𝛼𝑠 {𝜌𝑖|𝑖 = 0,1,2,⋯�}

𝑓(𝜇(𝑠 + 1),𝜎(𝑠 + 1)) ≤ 𝑓(𝜇(𝑠),𝜎(𝑠)) + 𝛼𝑠𝛿∇𝑓(𝜇(𝑠),𝜎(𝑠))𝑇𝑑(𝑠) (10)

where ;(𝜇(𝑠 + 1),𝜎(𝑠 + 1)) =  (𝜇(𝑠),𝜎(𝑠)) + 𝛼𝑠𝑑(𝑠)

(d) Record , let  and turn to Step (b);(𝜇(𝑠 + 1),𝜎(𝑠 + 1)) 𝑠 = 𝑠 + 1

(e) When  reach the precision, which means satisfies (𝜇(𝑠),𝜎(𝑠))

,then we get  as  and . Substitute  and  ‖∇𝑓(𝜇(𝑠),𝜎(𝑠))‖𝐹 ≤ 𝜖 (𝜇(𝑠),𝜎(𝑠)) 𝜇𝑚 𝜎𝑚 𝜇𝑚 𝜎𝑚

into Eq. 1 to get the corresponding . Finally, ,  and 𝑝𝑚 {𝜇𝑚} 𝑘
𝑚 = 1 {𝜎𝑚} 𝑘

𝑚 = 1
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 of  different kinds of fillers could be obtained by the same method {𝑝𝑚} 𝑘
𝑚 = 1 𝑘

above for different .𝑚

Table S3 

Distribution parameters  and  of three graphite powders𝜇 𝜎

G-31 G-13 G-3

𝜇 3.41 2.45 0.95

𝜎 0.17 0.51 0.33

Step 2: Mathematical modeling

Suppose we need to mix  powders of different particle sizes distribution, and the 𝑘

filling ratio in the formula is  ( ). Our goal is to find the best {𝑡𝑚} 𝑘
𝑚 = 1

𝑘

∑
𝑚 = 1

𝑡𝑚 = 1，𝑡𝑚 ≥ 0

proportion  so that the mixed proportion approaches the Dinger-Funk equation {𝑡𝑚} 𝑘
𝑚 = 1

 [1], 𝑈( ∙ )

𝑈(𝐷𝑝) = 100
𝐷𝑛

𝑝 ‒ 𝐷 𝑛
𝑚𝑖𝑛

𝐷 𝑛
𝑚𝑎𝑥 ‒ 𝐷 𝑛

𝑚𝑖𝑛
(11)

where ,  and  are the minimum and maximum particle size of the 𝑛 = 0.37 𝐷𝑚𝑖𝑛 𝐷𝑚𝑎𝑥

powder. This process can be transformed into mathematical forms:

𝑚𝑖𝑛
𝑡𝑚 ≥ 0,𝑚 = 1,⋯,𝑘 ‖ ∙

∫
𝐷𝑚𝑖𝑛

𝑘

∑
𝑚 = 0

𝑡𝑚𝑝𝑚(𝑥)𝑑𝑥 ‒ 𝑈( ∙ )‖𝐿2([𝐷𝑚𝑖𝑛,𝐷𝑚𝑎𝑥])

𝑠.𝑡.
𝑘

∑
𝑚 = 0

𝑡𝑚 = 1,𝑡𝑚 ≥ 0.                                             

(12)
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Expand the objective function of Eq. 12, and the above formula is equivalent to:

𝑚𝑖𝑛
𝑡𝑚 ≥ 0,𝑚 = 1,⋯,𝑘

𝐷𝑚𝑎𝑥

∫
𝐷𝑚𝑖𝑛

| 𝑦

∫
𝐷𝑚𝑖𝑛

𝑘

∑
𝑚 = 0

𝑡𝑚𝑝𝑚(𝑥)𝑑𝑥 ‒ 𝑈(𝑦)|2𝑑𝑦

𝑠.𝑡.        

𝑘

∑
𝑚 = 0

𝑡𝑚 = 1            

𝑡𝑚 ≥ 0, 𝑚 = 1,2,⋯𝑘.
                                              

(13)

Eventually, we get the standard form of quadratic programming:

𝑚𝑖𝑛
𝑡

1
2

𝑡𝑇𝐻𝑡 + 𝑓𝑇𝑡             

𝑠.𝑡.

𝑘

∑
𝑚 = 0

𝑡𝑚 = 1,         

𝑡𝑚 ≥ 0,𝑚 = 1,⋯,𝑘.
   

(14)

where,  and  are shown as follow:𝐻 = (𝐻𝑖,𝑗)𝑘 × 𝑘 𝑓 = (𝑓1,𝑓2,⋯,𝑓𝑘)𝑇

𝐻𝑖,𝑗 = 2

𝐷𝑚𝑎𝑥

∫
𝐷𝑚𝑖𝑛

[ 𝑦

∫
𝐷𝑚𝑖𝑛

𝑝𝑖(𝑥)𝑑𝑥 ∙
𝑦

∫
𝐷𝑚𝑖𝑛

𝑝𝑗(𝑥)𝑑𝑥]𝑑𝑦,

𝑓𝑖 =‒ 2

𝐷𝑚𝑎𝑥

∫
𝐷𝑚𝑖𝑛

[ 𝑦

∫
𝐷𝑚𝑖𝑛

𝑝𝑖(𝑥)𝑑𝑥 ∙ 𝑈(𝑦)]𝑑𝑦.

(15)

Here,  and  are respectively the constant matrix and constant vector after 𝐻 𝑓

 ,  and  are known. The solution  of Eq. 14 is the {𝑝𝑚( ∙ )} 𝑘
𝑚 = 1 𝐷𝑚𝑎𝑥 𝐷𝑚𝑖𝑛 𝑡 = (𝑡1,𝑡2,⋯,𝑡𝑘)𝑇

best proportioning in this algorithm. However, the complete model still requires to 

calculate the values of H and f. The solution process of matrix H and vector f are shown 

in Table S4. Through the calculation below, the matrix H and vector f of our powders in 

Eq. 15 are obtained as follows:

𝐻 = (133.50 113.68 78.50
113.68 106.26 77.99
78.50 77.99 72.71),     𝑓 = ( ‒ 94.09

‒ 86.52
‒ 66.87). (16)
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After obtaining the values of H and f, we completely establish the whole 

mathematical model.

Table S4 

Algorithm for solving H and f.

Algorithm 2: Solving parameters  and (𝐻𝑖,𝑗)𝑘 × 𝑘 {𝑓𝑖} 𝑘
𝑖 = 1

Calculate :(𝐻𝑖,𝑗)𝑘 × 𝑘

(a) Using the compound trapezoidal formula to calculate  as:𝐻𝑖,𝑗

𝐻𝑖,𝑗 = 2𝑡[1
2

ℎ𝑖,𝑗(𝐷𝑚𝑖𝑛) + ℎ𝑖,𝑗(𝑥1) + ℎ𝑖,𝑗(𝑥2) + ⋯ + ℎ𝑖,𝑗(𝑥𝑛1 ‒ 1) +
1
2

ℎ𝑖,𝑗(𝐷𝑚𝑎𝑥)]
(17)

where  is the integrand function, 

ℎ𝑖,𝑗(𝑥) =
𝑥

∫
𝐷𝑚𝑖𝑛

𝑝𝑖(𝑥)𝑑𝑥 ∙
𝑥

∫
𝐷𝑚𝑖𝑛

𝑝𝑗(𝑥)𝑑𝑥

 is length of each divided interval and  (we set 𝑡 = (𝐷𝑚𝑎𝑥 ‒ 𝐷𝑚𝑖𝑛) 𝑛1 𝑛1

) is the number of divided intervals in the outer integral ,𝑛1 = 1000 𝐻𝑖,𝑗

(b) The value of  can similarly be solved by Compound Trapezoidal Formula, ℎ𝑖,𝑗(𝑥𝑙)

where  have given by Algorithm 1, , for .𝑝𝑖(𝑥) 𝑥𝑙 = 𝐷𝑚𝑖𝑛 + 𝑙 × 𝑡 𝑙 = 0,1,⋯,𝑛1

 can be solved by the same method.{𝑓𝑖} 𝑘
𝑖 = 1
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Step 3: Model solving. 

By solving quadratic programming problem Eq. 14, the percentage ratio of G-3, G-

13, and G-31 as the multi-scale hybrid powder fillers had been obtained, which is 26.42%, 

28.16% and 45.42%. Quadratic programming problem can be solved by calling the 

quadratic programming API (quadprog []) in MATLAB or the cvxpy library function in 

Python.

The code is available in: https://github.com/dagaishizy/Quadratic-programming-for-

optimum-formulation-of-multi-scale-spherical-graphite-particles

References

[1] D. R. Dinger, J. E. Funk, MRS. Bulletin, 1997, 22, 19-23.


