Supplement revised

Eu- and Tb-adsorbed Si₃N₄ and Ge₃N₄:

Tuning the colours with one luminescent host

Cordula Braun,^{[a]*} Liuda Mereacre,^[a] Zheng Chen,^[b] Adam Slabon,^[c] David Vincent,^[d] Xavier Rocquefelte,^[d] and Jean-François Halet^[e]

[a] * Dr. C. Braun, L. Mereacre,
 Karlsruhe Institute of Technology (KIT)
 Institute for Applied Materials
 Herrmann-von-Helmholtz-Platz 1,
 D-76344 Eggenstein-Leopoldshafen
 E-mail: Cordula.Braun@kit.edu

[b] Z. Chen,Institute of Inorganic Chemistry, RWTH Aachen University,Landoltweg 1,D-52056 Aachen

[c] Prof. Dr. A. Slabon,
Chair of Inorganic Chemistry,
University of Wuppertal
Gaussstr. 20
42119 Wuppertal, Germany

[d] D. Vincent, Prof. Dr. X. Rocquefelte,Univ. Rennes - CNRSInstitut des Sciences Chimiques de Rennes, UMR 622635000 Rennes, France

[e] Prof. Dr. J.-F. Halet
CNRS – Saint-Gobain – NIMS, IRL 3629,
Laboratory for Innovative Key Materials and Structures (LINK),
National Institute for Materials Science (NIMS),
1-1 Namiki, Tsukuba 305-0044, Japan

Figure S1: X-ray powder diffraction pattern of Eu- β -Si₃N₄ (red) and Tb- β -Si₃N₄ (green), β -Si₃N₄ simulated from ICSD 170006 (light blue), ($\lambda = 0.709026$ Å).

Figure S2: X-ray powder diffraction pattern of pure β -Ge₃N₄ (blue), Eu- β -Ge₃N₄ (red), β -Ge₃N₄ simulated from ICSD 658934 (light blue), * marks α -Ge₃N₄ ($\lambda = 0.709026$ Å).

Figure S3: X-ray powder diffraction pattern of Tb- β -Ge₃N₄ (green), Eu,Tb- β -Ge₃N₄ (orange), β -Ge₃N₄ simulated from ICSD 658934 (light blue), * marks α -Ge₃N₄ (λ = 0.709026 Å).

Figure S4: a) REM-EDX of pure β -Si₃N₄, b) SEM of pure β -Si₃N₄, c) REM-EDX of Eu- β -Si₃N₄ distribution of Si (blue), N (pink) and Eu (green).

Figure S5: a) Luminescence spectrum of $Eu-\beta-Si_3N_4$ and $Tb-\beta-Si_3N_4$ powders mixed in a mortar, b) CIE diagram of $Eu-Si_3N_4$ and $Tb-Si_3N_4$ powders mixed in a mortar, c) Luminescence spectrum of $Eu-Ge_3N_4$ and $Tb-Ge_3N_4$ powders mixed in a mortar, d) CIE diagram of $Eu-\beta-Ge_3N_4$ and $Tb-\beta-Ge_3N_4$ powders mixed in a mortar.

Comparison with literature

Figure S6: Luminescence spectra of a) $Eu-\beta-Si_3N_4$ and b) $EuCl_3 \ x \ 6 \ H_2O$.

Figure S7: Luminescence spectra of a) $Eu-\beta-Ge_3N_4$ and b) $EuCl_3 x \in H_2O$.

The works of Li *et al.*¹ deal with the photoluminescence properties of rare-earth doped nanocrystalline α -Si₃N₄. Here we use the expression doping explicitly as this is the title of the work of Li *et al.*¹ The doping has been done with Eu- and Tb-oxide and the authors confirm the oxygen content playing an important role. Furthermore, the content of the lanthanoids must not exceed 0.5 mol%, because otherwise α -Si₃N₄ was no longer stable. They describe the Eu²⁺-doped α -Si₃N₄ to show a blue band emission peak at around 460 and 470 nm which is completely different to the red luminescence of Eu³⁺ known from literature²⁻⁴ When using EuN as a dopant the luminescence intensity decreases significantly. (see Figure S7) Regarding the doping of α -Si₃N₄ with Tb₄O₇ the result was declared as Tb_{0.005}Si_{2.985}N_{3.964}O_{0.00875}.¹ (See Figure S12)

Li *et al.*⁵ describe a Eu-doped yellow phosphor consisting of a mixed phase of nanocrystalline α -Si₃N₄ and β -Si₃N₄. It was realized by reacting solid polycarbosilane with europium acetylacetonate hydrate and followed by nitridation and calcination of the precursor. The broad band luminescence peak is around 550 nm, resulting in a yellow greenish colour. The authors confirmed an oxygen as well as a carbon content resulting in the formation of nonstoichiometric Si₃N₄. (see Figure S8)

Yin *et al.*⁶ synthesized very thin and wide single-crystal α -Si₃N₄ nanobelts by a vapor-solid thermal reaction featuring a very broad band emission spectrum 420-750 nm with a maximum at 575 nm. But here no doping with rare-earth ions is reported.

Su *et al.*⁷ prepared ultra-long, single crystal, Eu-doped α -Si3N4 nanowires by nitriding Eudoped cryomilled nanocrystalline Si powder resulting in a very broad band green emission around 570 nm. (see Figure S9)

Xu *et al.*⁸ introduced Eu²⁺-doped α -Si₃N₄ nanowires coated with a thin BN film. (see Figure S10) The relationship between photoluminescence and intrinsic point defects in α -Si₃N₄ via band structure modelling based on density functional theory calculations is interpretated by Huang *et al.*⁹ Huang *et al.*¹⁰ present formation energies, electronic and optical properties of Y-doped Si₃N₄ on the basis of DFT calculations. Huang and coworkers¹¹ report the photoluminescence behavior of ultra-pure α -Ge₃N₄ nanowires resulting in a blue-green luminescence (440 nm) from the electronic transition from the conduction band to valence band. Huang *et al.*¹² report the doping of single-crystalline α -Si₃N₄ nanowires (Y, Ce, Tb) via directly nitriding-doped nanocrystalline silicon powders. A comparison of the luminescence spectra of these one-dimensional nanomaterials with doped bulk material Tb- β -Si₃N₄ (see Figure S13) indicates clear differences. Also the doping of α -Si₃N₄:Eu displays a completely divers broad band luminescence peak around 578 nm. (see Figure S11)

Figure S8: Luminescence spectra of a) $Eu-\beta-Si_3N_4$ and b) $\alpha-Si_3N_4$: $Eu.^1$ (Wavelengths are estimated from the scale in *ref.*¹)

Figure S9: Luminescence spectra of a) $Eu-\beta-Si_3N_4$ and b) $\alpha-Si_3N_4$: $Eu.^5$ (Wavelengths are estimated from the scale in *ref.*⁵)

Figure S10: Luminescence spectra of a) $Eu-\beta-Si_3N_4$ and b) α -Si₃N₄:Eu.⁷ (Wavelengths are estimated from the scale in *ref*.⁷)

Figure S11: Luminescence spectra of a) $Eu-\beta-Si_3N_4$ and b) α -Si₃N₄:Eu nanowires coated with a thin BN film.⁸ (Wavelengths are estimated from the scale in *ref.*⁸)

Figure S12: Luminescence spectra of a) $Eu-\beta-Si_3N_4$ and b) $\alpha-Si_3N_4$: Eu nanowires.¹² (Wavelengths are estimated from the scale in *ref.*¹²)

Figure S13: Luminescence spectra of a) Tb- β -Si₃N₄ and b) α -Si₃N₄:Tb¹ (Wavelengths are estimated from the scale in *ref*.¹)

Figure S14: Luminescence spectra of a) Si_3N_4 :Tb and b) Si_3N_4 :Tb Nanowires¹² (Wavelengths are estimated from the scale in *ref.*¹²)

Figure S15: Luminescence spectra of a) Si_3N_4 :Tb and b) TbOCl.¹³ (Wavelengths are estimated from the scale in *ref.*¹³)

Figure S16: Mott-Schottky (MS) analysis of EIS measurements at an applied frequency of 10, 100 and 1000 Hz of a) pure Ge_3N_4 (blue), b) Tb- Ge_3N_4 (green), c) Eu- Ge_3N_4 (red) and d) Eu, Tb- Ge_3N_4 :Eu³⁺, Tb³⁺ (orange). Measurements were performed in a 0.1 M potassium phosphate electrolyte in pH 7.

Figure S17: Mott-Schottky analysis of EIS measurements at an applied frequency of 10, and 100 Hz of a) undoped Si_3N_4 (black), b) Tb- Si_3N_4 (green) and c) Eu- Si_3N_4 (red). Measurements were performed in a 0.1 M potassium phosphate electrolyte in pH 7.

DFT calculations

Calculations were carried out on pure and adsorbed β -Si₃N₄ and β -Ge₃N₄ within the Density Functional Theory (DFT) as implemented in the Vienna *ab initio* Simulation Package (VASP).^{14–16} For electron exchange and correlation we used the Generalized Gradient approximation as parameterized by Perdew, Becke, and Ernzehof (PBE) functional.¹⁷ Atom cores are described through the projector augmented wave (PAW) method.¹⁸ The kinetic energy cutoff for plane wave expansions was set to 500 eV, and the Brillouin zone was sampled by Monkhorst–Pack meshes.¹⁹ Atomic positions were optimized until forces were converged to lower than 3.10^{-2} eV/Å. DOS were shifted so that the Fermi level lies at 0 eV. For the geometry optimization the 4*f* states of the rare earths were placed in the pseudopotential, allowing to fix the oxidation degree to 3+ and to estimate the relative stabilities of both Eu³⁺ and Tb³⁺ in sites A and B. The calculations of the densities of states and magnetic properties was done by considering explicitly the 4*f* orbitals of the rare-earths in the valence states. Such an explicit treatment required to use GGA+U method²⁰ with a Hubbard term $U_{eff} = U - J = 6$ eV for the 4*f* (*RE*) states and to include the spin-orbit coupling (SOC).

References

- Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda and M. Mitomo, *J. Lumin.*, 2010, **130**, 1147– 1153.
- M. Peres, K. Lorenz, E. Alves, E. Nogales, B. Méndez, X. Biquard, B. Daudin, E. G.
 Víllora and K. Shimamura, J. Phys. D. Appl. Phys., 2017, 50, 325101.
- H. J. Lozykowski, W. M. Jadwisienczak, J. Han and I. G. Brown, *Appl. Phys. Lett.*, 2000, 77, 767–769.
- 4 A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai and Y. Fujiwara, *Appl. Phys. Express*, 2009, **2**, 071004.
- 5 Q. Li, C. Gong, X. Cheng and Y. Zhang, *Ceram. Int.*, 2015, **41**, 4227–4230.
- 6 L.-W. Yin, Y. Bando, Y.-C. Zhu and Y.-B. Li, *Appl. Phys. Lett.*, 2003, **83**, 3584–3586.
- R. Su, Z. F. Huang, F. Chen, Q. Shen and L. M. Zhang, in *Key Engineering Materials*, Trans Tech Publications Ltd, 2017, vol. 727, pp. 635–641.
- 8 X. Xu, T. Nishimura, Q. Huang, R.-J. Xie, N. Hirosaki and H. Tanaka, *J. Am. Ceram. Soc.*, 2007, **90**, 4047–4049.
- 9 Z. Huang, F. Chen, Q. Shen and L. Zhang, *RSC Adv.*, 2016, **6**, 7568–7574.
- Z. Huang, F. Chen, R. Su, Z. Wang, J. Li, Q. Shen and L. Zhang, J. Alloys Compd., 2015,
 637, 376–381.

- Z. Huang, R. Su, H. Yuan, J. Zhang, F. Chen, Q. Shen and L. Zhang, *Ceram. Int.*, 2018, 44, 10858–10862.
- Z. Huang, Z. Wang, H. Yuan, J. Zhang, F. Chen, Q. Shen and L. Zhang, *J. Mater. Sci.*, 2018, 53, 13573–13583.
- P. A. M. Berdowski, J. van Herk, L. Jansen and G. Blasse, *Phys. status solidi*, 1984, **125**, 387–391.
- 14 G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15–50.
- 15 G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251–14269.
- 16 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 17 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396–1396.
- 18 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953–17979.
- 19 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188–5192.
- 20 S. Dudarev and G. Botton, *Phys. Rev. B Condens. Matter Mater. Phys.*, 1998, **57**, 1505–1509.