Supporting Information

Microwave-assisted multicomponent synthesis of antiproliferative 2,4-dimethoxy-tetrahydropyrimido[4,5-b]quinolin-6(7*H*)-ones

Subham G. Patel,^a Aday González-Bakker,^b Ruturajsinh M. Vala,^a Paras J. Patel,^a Adrián Puerta,^b Apoorva Malik,^c Rakesh K Sharma,^c José M. Padrón,^b and Hitendra M. Patel ^{a*}

^a Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India

^b BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, E-38206 La Laguna, Spain

^c Sustainable Materials and Catalysts Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology, Jodhpur, India

* Corresponding Author: Hitendra M. Patel, E-mail: *hm_patel@spuvvn.edu*.

Sr. No.	Content	Page No.
1	¹ H-NMR, ¹³ C{ ¹ H}-NMR Spectral data of all	S2-S23
	Compounds 4(a-v)	
2	HRMS and LCMS Spectral data of all	S24-S34
	Compounds 4(a-v)	
3	Single-crystal X-ray diffraction data of compound 4f	S35-S38
	and 4o	
4	Green Matrix calculation	S39-S41

Table of Contents

Figure S1: ¹H-NMR (500 MHz, CDCl₃) of Compound 4a.

Figure S2: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4a.

Figure S4: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4b.

Figure S6: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4c.

Figure S8: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4d.

Figure S10: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4e.

Figure S12: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4f.

Figure S14: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4g.

Figure S16: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4h.

Figure S18: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4i.

Figure S17: ¹H-NMR (500 MHz, CDCl₃) of Compound 4i.

Figure S20: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4j.

Figure S21: ¹H-NMR (500 MHz, CDCl₃ and DMSO-d₆) of Compound 4k.

Figure S22: ¹³C-NMR (125 MHz, CDCl₃ and DMSO-d₆) of Compound 4k.

Figure S24: ¹³C-NMR (125 MHz, CDCl₃) of Compound 41.

Figure S26: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4m.

Figure S28: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4n.

Figure S32: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4p.

Figure S34: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4q.

Figure S36: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4r.

Figure S35: ¹H-NMR (500 MHz, CDCl₃) of Compound 4r.

Figure S38: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4s.

Figure **S37:** ¹H-NMR (500 MHz, CDCl₃) of Compound **4s.**

Figure S40: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4t.

Figure S42: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4u.

Figure S44: ¹³C-NMR (125 MHz, CDCl₃) of Compound 4v.

Figure S45: HRMS of Compound 4a.

Figure S46: LCMS of Compound 4b.

Figure S48: LCMS of Compound 4d.

Retention Time (MS)	MS Area	Mol. Weight or Ion				
5.591	1183032	400.20 I 399.20 I 398.20 I				
MSD1 SPC, 80000 - 60000 - 40000 - 20000 - 0 -	time=5.552:5.639 of	C:\CHEM32\1\DATA\261	12021-SP 2021-11-2	26 13-15-48\SE104.D	MM-APCI, Neg, Fast	Scan, Fra Max: 86026

Figure S49: LCMS of Compound 4e.

Figure **S50:** LCMS of Compound **4f.**

Retention Time (MS)	MS Area	Mol. Weight or Ion		
5.152	469870	395.20 I 394.20 I		
MSI 40000	D1 SPC, time=5.119:5.19	3 of C:\CHEM32\1\DATA\2	26112021-SP 2021-11-26 13-15-48\SE10	6.D MM-APCI, Neg, Fast Scan, Fra Max: 43658
	100 200	300	400 500	600 700 m/z

Figure **S51:** HRMS of Compound **4g.**

Figure **S52:** HRMS of Compound **4h.**

Figure **S54:** HRMS of Compound **4j**.

Figure **S55:** HRMS of Compound 4k.

Figure **S56:** HRMS of Compound **41.**

Figure **S57:** HRMS of Compound **4m.**

Figure **S58:** HRMS of Compound **4n**.

Figure **S59:** LCMS of Compound **40.**

Retention		Mol. Wei	ght					
Time (MS)	MS Area	or Ion						
5.694	3213958	445.20	I					
		445.00	I					
		444.20	I					
		444.00	I					
		443.20	I					
		442.20	I					
		442.00	I					
MSD1 SPC,	time=5.655:5.766 of	C:\CHEM32\	1\DATA\2611	2021-SP 2021-11-2	26 13-15-48\SE103.D	MM-APCI, Neg, Fa	ist Scan, Fra	
					0 0		Max: 93310	
80000					4			
60000					4			
40000					0.0			
20000					**			
0					II			
100	200		200	400	500	600		m/7

Figure **S60:** HRMS of Compound **4p.**

Figure S62: HRMS of Compound 4r.

Figure S63: HRMS of Compound 4s.

Figure S64: HRMS of Compound 4t.

Figure S66: HRMS of Compound 4v.

Crystal X-ray report of compound **4f** [CCDC: **2157101**]. checkCIF (basic structural check) running

Checking for embedded fcf data in CIF ...

Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 106

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Please wait while processing Interpreting this report

Structure factor report

Datablock: 106

Bond precisi	.on:	C-C =	0.0033 A	W	avelength=0.71073
Cell: a=17.3963(6) b=22.485(1)		c=14.0877	(9)		
	alpha=90		beta=127.7461(13)	gamma=90	
Temperature:	296 K				
		Calculat	ed		Reported
Volume		4357.3(4	.)		4357.3(4)
Space group		C 2/c			C 2/c
Hall group		-C 2yc			-C 2yc
Moiety formu	la	C22 H25	N3 04		?
Sum formula		C22 H25	N3 04		C22 H25 N3 04
Mr		395.42			395.45
Dx,g cm-3		1.206			1.206
Z		8			8
Mu (mm-1)		0.084			0.084
F000		1679.9			1680.0
F000'		1680.63			
h,k,lmax		20,26,16			20,26,16
Nref		3835			3835
Tmin,Tmax		0.979,0.	984		0.979,0.984
Tmin'		0.979			
Correction m MULTI-SCAN	ethod= # R	eported T	Limits: Tmin=0.979	Tmax=0.98	4 AbsCorr =
Data complet	eness= 1.0	00	Theta(max)= 2	25.000	
R(reflection	s)= 0.0468	(2826)		wR2(re1 3835)	flections)= 0.1368(
5 = 1.045		Npar	= 293		
The following test-na Click on the h	ALERTS we me_ALERT	ere genera alert-t y or more d	ated. Each ALERT has ype_alert-level . etails of the test.	the forma	t
Alert le PLAT601_ALE	EVELA	it Cell Co	ntains Solvent Access	ible VOIDS	of . 221 Ang**3
Author Ro significar The comp	esponse: A nt improve bound is th	Application ment on nerefore	on of procedure SQU refinement and the considered as a DES	JEEZE (pr refore wa SOLVATE	ogram PLATON) did not bring about a as not retained for the final refinement. with no solvent content.
Alert	evel B RT_3_B Re	flection #	Likely Affected by th	e Beamsto	p 1 Check
Author Ro small 2th	esponse: T eta values	he cryst , may ha	al which was studie we been affected by	ed was sm y beam st	all in size and some reflections having op.

• Alert level C							
PLAT220_ALERT_2_C NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range 3.8 Ratio							
PLAT222_ALERT_3_C NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range 4.4 Ratio							
PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C15 Check							
LAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of O2 Check							
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C17 Check							
PLAT334_ALERT_2_C Small Aver. Benzene C-C Dist C14 -C19 1.37 Ang.							
PLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers 1 Check							
Alert level G							
PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check							
PLAT068_ALERT_1_G Reported F000 Differs from Calcd (or Missing) Please Check							
PLAT128_ALERT_4_G Alternate Setting for Input Space Group C2/c I2/a Note							
PLAT301_ALERT_3_G Main Residue Disorder(Resd 1) 7% Note							
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O3 . 109.4 Degree							
PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for O3A . 108.8 Degree							
PLAT413_ALERT_2_G Short Inter XH3 XHn H21CH22C . 1.99 Ang.							
1/2-x,3/2-y,1-z = 7_566 Check							
PLAT793_ALERT_4_G Model has Chirality at C7 (Centro SPGR) R Verify							
PLAT860_ALERT_3_G Number of Least-Squares Restraints 1 Note							
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary Please Do !							
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still 43% Note							
PLA1941_ALERI_3_G Average HKL Measurement Multiplicity							
PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged Please Check							
PLA196/_ALERI_5_G Note: Iwo-Iheta Cutoff Value in Embedded .res 50.0 Degree							
PLA1978_ALER1_2_G Number C-C Bonds with Positive Residual Density. 4 Info							
1 ALERT level A = Most likely a serious problem - resolve or explain							
1 ALERT level B = A potentially serious problem, consider carefully							
7 ALERT level C = Check. Ensure it is not caused by an omission or oversight							
15 ALERT level G = General information/check it is not something unexpected							
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data							
11 ALERT type 2 Indicator that the structure model may be wrong or deficient							
7 ALERT type 3 Indicator that the structure quality may be low							
2 ALERT type 4 Improvement, methodology, query or suggestion							
1 ALERT type 5 Informative message, check							

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022 **Datablock 106** - ellipsoid plot

Crystal X-ray report of compound 40 [CCDC: 2149724].

checkCIF (basic structural check) running

```
Checking for embedded fcf data in CIF ...
```

Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait ...

checkCIF/PLATON (basic structural check)

Structure factors have been supplied for datablock(s) 103

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Please wait while processing Interpreting this report

Structure factor report

Datablock: 103

Bond precis	ion:	C-C =	0.0032 A	Wavelength=0.71073
Cell:	a=6.0680	=6.0680(2) b=13.03		c=13.5866(5)
	alpha=10	3.302(3)	beta=95.6327(18)	gamma=103.2902(19)
Temperature	: 296 K			
		Calcula	ted	Reported
Volume		1004.76	(7)	1004.76(7)
Space group)	P -1		P -1
Hall group		-P 1		-P 1
Moiety form	nula	C21 H22	Br N3 03	?
Sum formula	1	C21 H22	Br N3 03	C21 H22 Br N3 03
Mr		444.32		444.32
Dx,g cm-3		1.469		1.469
Z		2		2
Mu (mm-1)		2.072		2.072
F000		456.0		456.0
F000'		455.60		
h,k,lmax		7,15,16		7,15,16
Nref		3554		3531
Tmin,Tmax		0.602,0	.813	0.625,0.820
Tmin'		0.590		
Correction MULTI-SCAN	method= #	Reported	T Limits: Tmin=0.625	5 Tmax=0.820 AbsCorr =
Data comple	eteness= 0.	994	Theta(max)=	24.993
R(reflection	ons)= 0.031	5(2771)		wR2(reflections)= 0.0762(
	,			3531)
5 = 1.029		Npai	r= 261	
The followin test-na Click on the	g ALERTS v ame_ALER hyperlinks	vere gener T_alert-t for more o	rated. Each ALERT has ype_alert-level. details of the test.	s the format
• Alert PLAT911_AL	Ievel C .ert_3_c M	lissing FCF	- Refl Between Thmin	& STh/L= 0.594 24 Report
Alert PLAT793_AL PLAT883_AL PLAT909_AL PLAT941_AL PLAT965_AL PLAT967_AL PLAT978_AL	LERT_4_G M LERT_1_G M LERT_3_G P LERT_3_G A LERT_3_G T LERT_2_G T LERT_5_G M FRT_2_G M	Nodel has lo Info/Va Percentage Werage Hi The SHELX lote: Two-	Chirality at C8 lue for _atom_sites_s of I>2sig(I) Data at (L Measurement Multi L WEIGHT Optimisati Theta Cutoff Value in C Bonds with Positive	(Centro SPGR) S Verify olution_primary . Please Do ! Theta(Max) Still 50% Note iplicity 3.9 Low on has not Converged Please Check Embedded .res 50.0 Degree Pessidual Density 9 Info

0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully

1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected

1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

- 2 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 3 ALERT type 3 Indicator that the structure quality may be low
- 1 ALERT type 4 Improvement, methodology, query or suggestion
- 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022 Datablock 103 - ellipsoid plot

4. Green chemistry metrics analysis

The following formulae were used for calculating Atom Economy (AE), Atom Efficiency (AEf), Carbon Efficiency (CE), Reaction Mass Efficiency (RME), Optimum Efficiency (OE), Mass Productivity (MP), Mass Intensity (MI) and Process Mass Intensity (PMI), E factor, Solvent and Water Intensity (SI and WI).

 $AE = \frac{Molecular \ weight \ of \ product}{Total \ molecular \ weight \ of \ reactants} \times 100$ $AEf = AE \times \% yield$ $CE = \frac{Amount \ of \ carbon \ in \ the \ product}{Total \ carbon \ present \ in \ the \ reactant} \times 100$ $RME = \frac{Mass \ of \ isolated \ product}{Total \ mass \ of \ reactant} \times 100$

$$OE = \frac{RME}{AE} \times 100$$

$$PMI = \frac{Total \ mass \ of \ input \ material \ in \ the \ whole \ process}{Mass \ of \ product}$$

$$MP = \frac{1}{PMI} \times 100$$

$$E Factor = PMI - 1$$

 $SI = \frac{Total \ mass \ of \ solvents \ excluding \ water \ in \ the \ whole \ process}{Mass \ of \ product}$

 $WI = rac{Total mass of water in the whole process}{Mass of product}$

4.1. Green chemistry metrics analysis for conventional method

Materials used for metrics calculations:4-Chlorobenzaldehyde **1a** (140 mg, 1 mmol), Dimedone **2** (140 mg, 1 mmol), 6-amino-2,4-dimethoxypyrimidine **3** (155 mg, 1 mmol), Product **4a** (290 mg, 0.73 mmol), Acetic acid (3.147 g, 3 mL), water (20 g, 20 mL), diethyl ether (3.57 g, 5 mL), petroleum ether (3.35 g, 5 mL).

$$AE = \frac{399.88}{140.57 + 140.18 + 155.15} \times 100 = \frac{399.88}{435.9} \times 100 = 91.74$$

$$AEf = 91.74 \times 73\% = 66.97$$

$$CE = \frac{21 \times 0.0007252}{7 \times 0.001 + 8 \times 0.001 + 6 \times 0.001} \times 100 = 72.52$$
$$RME = \frac{290}{435} \times 100 = 66.67$$
$$OE = \frac{66.67}{91.74} \times 100 = 72.67$$
$$PMI = \frac{30.50}{0.290} = 105.17$$
$$MP = \frac{1}{105.17} \times 100 = 0.95$$
$$E \ Factor = 105.17 - 1 = 104.17$$
$$SI = \frac{3.147 + 3.57 + 3.35}{0.290} = 34.71$$
$$WI = \frac{20}{0.290} = 68.97$$

4.2. Green chemistry metrics analysis for microwave method

Materials used for metrics calculations: 4-Chlorobenzaldehyde **1a** (140 mg, 1 mmol), Dimedone **2** (140 mg, 1 mmol), 6-amino-2,4-dimethoxypyrimidine **3** (155 mg, 1 mmol), Product **4a** (333 mg, 0.83 mmol), Acetic acid (3.147 g, 3 mL), water (20 g, 20 mL), diethyl ether (3.57 g, 5 mL), petroleum ether (3.35 g, 5 mL).

$$AE = \frac{399.88}{140.57 + 140.18 + 155.15} \times 100 = \frac{399.88}{435.9} \times 100 = 91.74$$

$$AEf = 91.74 \times 84\% = 77.06$$

$$CE = \frac{21 \times 0.0008328}{7 \times 0.001 + 8 \times 0.001 + 6 \times 0.001} \times 100 = 83.28$$
$$RME = \frac{333}{435} \times 100 = 76.55$$
$$OE = \frac{76.55}{91.74} \times 100 = 83.44$$
$$PMI = \frac{30.50}{0.333} = 91.59$$
$$MP = \frac{1}{91.59} \times 100 = 1.09$$
$$E \ Factor = 91.59 - 1 = 90.59$$
$$SI = \frac{3.147 + 3.57 + 3.35}{0.333} = 30.23$$
$$WI = \frac{20}{0.333} = 60.06$$