Supporting Information

Effect of the dangling aromatic ring on neutral luminescent bis(phosphine) Cu(I)/Ag(I) complexes with the asymmetric pyridyl-tetrazolate ligands

Jing Xiang,^{a†} Li-Xin Wang,^{a†} Xu Zhang,^{*a†} De-Sheng Zhu,^b Lei Wang,^{*c} Lu-Lu Liu,^a Chi-Fai Leung^{*d} and Jing Xiang^{*a}

+ These authors contribute equally.

^{a.} College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China. E-mail: xiangjing@yangtzeu.edu.cn.

^{b.}School of Physic and Optoelectronic Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.

^{c.} Anhui research academy of ecological and environmental sciences, Hefei, 230071, Anhui P. R. China.

^{d.} Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.

	Experimental section	S1-S2
Figure S1	The UV/vis spectra of HL ¹ -HL ³ in MeOH solution.	
Figure S2	The absorption spectra of 1 in various solvents.	
Figure S3	¹ H NMR of 5 in $CDCI_3$.	
Figure S4	³¹ P{ ¹ H} NMR of 5 in CDCl ₃ .	
Figure S5	¹ H NMR of 6 in CDCl ₃ .	S4
Figure S6	¹ H NMR of 7 in CDCl ₃ .	S4
Figure S7	$^{31}P{^{1}H} NMR of 7 in CDCl3.$	S5
Figure S8	The $\pi \cdots \pi$ stacking interactions in 2 and 7	
Figure S9	The Intermolecular H-bonding interactions in 2 and 7 .	
Figure S10	Emission spectra of 7 in the (a) CH_2Cl_2 (b) in solid state (c) in low- temperature 77 K glassy media EtOH-MeOH (4:1, v/v) (λ_{ex} = 355 nm).	
Figure S11	The CV of 2 in CH_2Cl_2 containing 0.1 <i>M</i> [nBu_4N]PF ₆ with scan rate = 0.1 V/s.	S6
Table S1	Summarized CVs data for compounds 1-6 in CH ₂ Cl ₂ .	S6
Table S2	Crystal data and structure refinement details for compounds 2 and 7	S7

Table of contents

Experimental section

Physical Measurements and Instrumentation. ¹H NMR and ³¹P{¹H} NMR spectra were recorded on a Bruker AV300 (400 MHz) FT-NMR spectrometer. Chemical shifts (δ, ppm) are reported relative to tetramethylsilane (Me₄Si). Elemental analysis was performed on an ElementarVario MICRO Cube elemental analyzer. IR spectra of the solid samples as KBr discs were obtained within the range 4000–400 cm⁻¹ on an AVATAR 360 FTIR spectrometer. All of the electronic absorption spectra were recorded on a Hewlett–Packard 8453 or Hewlett– Packard 8452A diode-array spectrophotometer. Steady-state emission spectra were measured at room temperature and at 77 K on a Horiba JobinYvon Fluorolog-3-TCSPC spectrofluorometer. The solutions were rigorously degassed on a high-vacuum line in a two-compartment cell with not less than four successive freeze– pump–thaw cycles. The measurements at 77 K were carried out on dilute solutions of the samples in EtOH/MeOH (4:1, v/v) loaded in a quartz tube inside a quartz-walled Dewar flask that contained liquid nitrogen. Luminescence lifetimes were measured by using the time-correlated single-photon-counting (TCSPC) technique on a Fluorolog-3-TCSPC spectrofluorometer in a fast MCS mode with a Nano LED-375 LH excitation source, which had a peak excitation wavelength at 375 nm and a pulse width of less than 750 ps. The photon-counting data were analyzed on Horiba JobinYvon Decay Analysis Software.

X-ray Crystallography. The crystal structures were determined on an Oxford Diffraction Gemini S Ultra X-ray single-crystal diffractometer using graphite-monochromated Cu K\a radiation ($\lambda = 1.5418$ Å). The structures were solved by using the SHELXT-2014 program.¹ The Cu metal atoms and many of the non-hydrogen atoms were located according to the Intrinsic Phasing method. The positions of the other non-hydrogen atoms were located after refinement by full matrix least-squares by using the SHELXL-2018 program.² In the final stage of the least-squares refinement, all non-hydrogen atoms were refined anisotropically. H atoms were generated by SHELXL-2018 program. The positions of H atoms were calculated based on riding model with thermal parameters that were 1.2 times that of the associated C atoms and participated in the calculation of the final R indices. The structures reported in this paper have been deposited to the Cambridge Crystallographic Data Centre (CCDC) with the depository numbers CCDC 2178439-2178440 for **2** and **7**, respectively.

Computational Details.

All the calculations were done by GAUSSIAN 09, version B.01. ⁴ The ground state and lowest triplet state structures of complexes **2** and **7** were optimized using B3LYP functional ⁵ and a mixed basis set of 6-31+G(d) (for C, H, N, P) and LANL2DZ ⁶ (for Cu). To reduce computation complexity, the phenyl rings of PPh₃ ligand is replaced by methyl groups. Polarized Continuum Model ⁷ (PCM) was employed to account for the solvent effect. Frequency calculations were done after optimization and no imaginary frequencies were found. The X-ray crystal structures of the complexes were used without further optimization.

References:

- G. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, Acta Crystallographica Section A, 2015, 71, 3-8.
- [2] G. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallographica Section C, 2015, 71, 3-8.
- [3] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H., J. Appl. Cryst. 2009, 42, 339-341.
- [4] M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford

CT, 2009

- [5] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; (b) C. Lee, W, Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623 11627
- [6] (a) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241; (b) A. Schäfer, H. Horn and R. Ahlrichs, *J. Chem. Phys.* 1992, **97**, 2571–2577; (c) W. R. Wadt and P. J. Hay, *J. Chem. Phys.* 1985, **82**, 284–298.
- [7] G. Scalmani and M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.

Fig. S1 The UV/vis spectra of HL1-HL3 in MeOH solution.

Fig. S2 The absorption spectra of 1 in various solvents.

Fig. S4 $^{31}P\{^{1}H\}$ NMR of 5 in CDCl3.

Fig. S5 ¹H NMR of 6 in CDCl₃.

Fig. S6 ¹H NMR of 7 in CDCl₃.

- 9.22

Fig. S7 ³¹P{¹H} NMR of 7 in CDCl₃.

Fig. S8 The $\pi \cdots \pi$ stacking interactions in 2(a), 7(b).

Fig. S9 The Intermolecular H-bonding interactions in 2(a) and 7(b).

Fig. S10 Emission spectra of 7 (a) in the CH_2Cl_2 at room temperature. (b) in solid state at room temperature. (c) in low-temperature 77 K glassy media EtOH-MeOH (4:1, v/v) (λ_{ex} = 380 nm).

Fig. S11 The CV of 2 in CH_2Cl_2 containing 0.1 M [nBu_4N]PF₆ with scan rate = 0.1 V/s.

Table S1 Summarized CVs data for compounds 1-6 in CH₂Cl₂.

	E _{pa} (ox)	E _{pc} (red)
1	1.06	-1.18
2	1.12	-0.95
3	1.13	-1.48
4	1.12	-1.10
5	1.05	-1.08
6	1.02	-1.02

	2	7
Formula	$C_{43}H_{34}CuN_9P_2$	$C_{43}H_{34}AgN_9P_2$
Mr	802.30	846.60
т /к	150.0 (1)	100.0 (1)
Crystal syst	Monoclinic	Monoclinic
Space group	P2 ₁ /n	P2 ₁ /n
a/Å	18.9696 (2)	19.2853 (9)
b/Å	10.5128 (1)	10.8239 (4)
c/Å	19.2832 (2)	19.3211 (8)
α, (°)	90	90
<i>в</i> , (°)	89.9860 (10)	92.111 (4)
γ, (°)	90	90
<i>V</i> / Å ³	3845.53 (7)	4030.4 (3)
Ζ	4	4
$ ho_{ m calcd}$, Mg m ⁻³	1.353	1.395
F(000)	1615	1728
Collected refl.	41771	26014
Unique refl.	7724	7814
R(int)	0.060	0.085
$R_1, l > 2\sigma(l)$	0.077	0.066
wR(all)	0.227	0.210
GOF	1.07	1.03
No.of par.	500	484

Table S2 Crystal data and structure refinement details for compounds 2 and 7.