## Supplementary Materials

## Ascorbic acid enhanced ferrous/persulfate system for degradation of tetracycline contaminated groundwater

Hengyi Wang<sup>a,b</sup>, Liyang Zhao<sup>a,b</sup>, Qian Li<sup>a,b</sup>, Xixiang Liu<sup>a,b,c\*</sup>, Liying Liang<sup>a,b</sup>, Jianmei Cen <sup>a,b</sup>, Yan Liu<sup>a,b</sup>

<sup>a</sup>School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China.

<sup>b</sup>Research Center for Soil and Groundwater Environment, Guangxi Minzu University, Nanning 530006, China.

<sup>c</sup>Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530001, China.

\*Corresponding Author. Email: liuxx200208@163.com (X.X. Liu)

Supplementary materials includes a total of 4 figures and 2 tables.

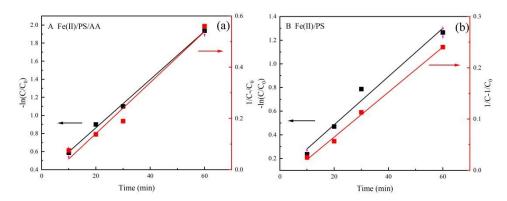



Fig. S1 Comparison of system dynamics between Fe(II)/PS/AA and Fe(II)/PS. Experimental conditions: TC dosage=10 mg L<sup>-1</sup>, Fe(II) dosage=0.01 mM, PS dosage=0.8 mM, AA dosage=0.05mM, initial pH was not adjusted.

Table S1 Kinetics constants of TC degradation by Fe(II)/PS/AA and Fe(II)/PS system.

| Reaction<br>system | Kinetic series      | The fitted reaction rate equation     | $K_{app1}(min^{-1})$<br>$K_{app2}(L mg^{-1} min^{-1})$ | $\mathbb{R}^2$ |
|--------------------|---------------------|---------------------------------------|--------------------------------------------------------|----------------|
| Fe(II)/PS/AA       | Pseudo-first order  | -ln(C/C <sub>0</sub> )=0.3306+0.0266t | 0.0266                                                 | 0.996          |
|                    | Pseudo-second order | $1/C-1/C_0 = -0.0576 + 0.0099t$       | 0.0099                                                 | 0.955          |
| Fe(II)/PS          | Pseudo-first order  | $-\ln(C/C_0) = -0.0228 + 0.0043t$     | 0.0043                                                 | 0.994          |
|                    | Pseudo-second order | $1/C-1/C_0=0.0778+0.0203t$            | 0.0203                                                 | 0.966          |

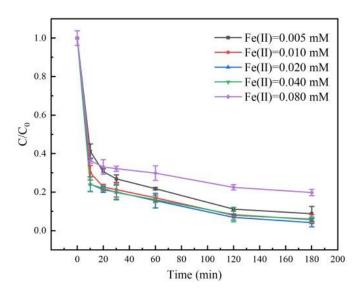



Fig. S2 Effect of Fe(II) dosage of the Fe(II)/PS/AA system for the removal of TC. Experimental conditions: TC dosage=10 mg L<sup>-1</sup>, Fe(II) dosage=0.01 mM, PS dosage=0.8 mM, AA dosage=0.05 mM, initial pH was not adjusted.

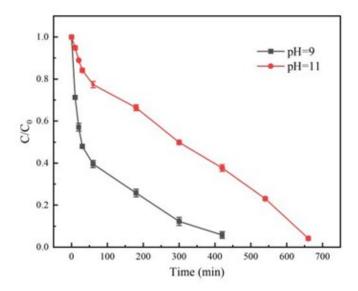



Fig. S3 Effect of pH on degradation of TC in Fe(II)/PS/AA system. Experimental conditions: TC dosage= $10 \text{ mg L}^{-1}$ , Fe(II) dosage=0.01 mM, PS dosage=0.8 mM, AA dosage=0.05 mM.

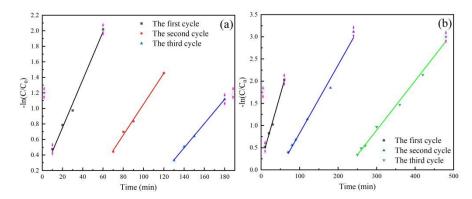



Fig. S4 Reusability evaluation of Fe(II). Experimental conditions: TC dosage=10 mg L-1, Fe(II) dosage=0.01 mM, PS dosage=0.8 mM, AA dosage=0.05 mM, initial pH was not adjusted.

Table S2 Kinetics constants of TC degradation by Fe(II)/PS/AA system in the experiment of Fe(II) Reusability evaluation.

|     | Cycle  | Pseudo-first-order kinetics fitting   |                     | R <sup>2</sup> |
|-----|--------|---------------------------------------|---------------------|----------------|
|     | period | reaction rate equation                | $K_{app}(min^{-1})$ |                |
| (a) | First  | -ln(C/C <sub>0</sub> )=0.1386+0.0308t | 0.0308              | 0.995          |
|     | Second | $-\ln(C/C_0) = -0.9304 + 0.0198t$     | 0.0198              | 0.997          |
|     | Third  | $-\ln(C/C_0) = -1.6931 + 0.0156t$     | 0.0156              | 0.999          |
| (b) | First  | $-\ln(C/C_0)=0.1901+0.0303t$          | 0.0303              | 0.996          |
|     | Second | $-\ln(C/C_0) = -0.7075 + 0.0153t$     | 0.0153              | 0.994          |
|     | Third  | $-\ln(C/C_0) = -2.4410 + 0.0111t$     | 0.0111              | 0.997          |