Fe(III) – catalysed selective C–N bond cleavage of *N*–phenylamide by electrochemical method

Yiwen Xu,^a Yang Long,^a Runyou Ye,^a Qiang Li,^a Fang Ke^b and Xiangge Zhou*^a

^a College of Chemistry, Sichuan University, Chengdu 610064, P. R. China, Fax: +86-28-85412907; Tel: +86-28-85412907; E-mail: zhouxiangge@scu.edu.cn

^b School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, P. R. China, Tel: +86-591-22862016; Fax: +86-591-22862016; E-mail: kefang@mail.fjmu.edu.cn

Supporting information

General information	3
Table S1: Optimisation of electrochemical dephenylation of secondary phenylamide ^a	3
Scheme S1: General procedure for the catalytic reactions	4
The setup for constant current electrolysis	5
Scheme S2: General procedure for gram scale reaction	5
Mechanism Studies	5
Scheme S3: Stepwise dephenylation to get intermediate product:	5
Scheme S4: Steric hindrance effect:	7
Table S2: Radical scavenger experiments ^a :	7
Cyclic voltammetry experiment	8
Scheme S5: Deuterium-labeling experiment	8
Scheme S6: Procedure for synthesis of Trimethobenzamide	10
Scheme S7: H ₂ O ¹⁸ experiment	11
Experimental procedures and characterisation data	12
References	18
¹ H NMR and ¹³ C NMR spectra for the products	19

General information

All reagents were purchased from commercial suppliers and used without further purification. Column chromatography was carried out with silica gel (100–200 mesh). Thin layer chromatography was carried out using Merck silica gel GF254 plates. All products were characterised by NMR. ¹H NMR spectra were recorded at 400 MHz and ¹³C NMR spectra were recorded at 101 MHz (Bruker DPX) with CDCl₃ and DMSO– d_6 as solvent. Chemical shifts are reported in ppm using TMS as internal standard. Gas chromatography–mass spectra (GC/Mass) were recorded on an Agilent Technologies 6890 N instrument with an Agilent 5973N mass detector (EI) and a HP5–MS 30 cm*0.25 mm capillary apolar column (Stationary phase: 5% diphenyldimethylpolysiloxane film, 0.25 µm). GC/Mass method: Initial temperature: 50 °C; Initial time: 3 min; Ramp: about 20°C/min until 280 °C then 10 min. High resolution mass spectra (HR-MS) were obtained with a Shimadzu LCMS–IT–TOF (ESI). Shanghai chenhua CHI600E electrochemical workstation was used in the standard configuration as delivered, including proprietary software. The setup for constant current electrolysis(Shanghai xirui DJS–292B constant potentiometer) consisted of an undivided cell equipped with anode and cathode(Electrodes come from commercial suppliers), if not noted otherwise.

Table S1: Optimisation of electrochemical dephenylation of secondary phenylamide a O electrode, electrolyte O

solvent, catalyst

ì

0

0

			N. N	undivided cell, 20 mA		H ₂		
				room temperature, 24	" L			
		1a			2b			
Enry	Solvents	Catalyst	Time	Temperature	Electrolyts	Electrode	Additives	Yields ^b
1	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	room	ⁿ Bu₄NBr	Pt(+)Pt(-)	-	6
temperature(RT)								
2	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NClO ₄	Pt(+)Pt(-)	-	18
3	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NF ₃ O ₃ S	Pt(+)Pt(-)	-	7
4	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NB	Pt(+)Pt(-)	-	5
5	MeCN/H ₂ O	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	60
6	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NBF ₄	Pt(+)Pt(-)	-	Trace
7	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu₄NI	Pt(+)Pt(-)	-	19
8	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NF.3H ₂ O	Pt(+)Pt(-)	-	40
9	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Me ₄ NBr	Pt(+)Pt(-)	-	Trace
10	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NBr ₃	Pt(+)Pt(-)	-	Trace
11	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Pro ₄ NBr	Pt(+)Pt(-)	-	Trace
12	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Et ₄ NI	Pt(+)Pt(-)	-	26
13	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NBH ₄	Pt(+)Pt(-)	-	Trace
14	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	-	Pt(+)Pt(-)	-	N.D.
15	MeCN/H ₂ O	AICl ₃ .	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	30
16	MeCN/H ₂ O	ZnCl ₂	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	58
17	MeCN/H ₂ O	Zn(OTf) ₂	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
18	MeCN/H ₂ O	SbCl₃	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
19	MeCN/H ₂ O	InCl₃	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
20	MeCN/H ₂ O	Cu(OTf) ₂	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	40
21	MeCN/H ₂ O	In(OTf)₃	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
22	MeCN/H ₂ O	Ni(OTf) ₂	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	8
23	MeCN/H ₂ O	RuCl₃	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	42
24	MeCN/H ₂ O	AgOTf	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	30
25	MeCN/H ₂ O	Ag ₂ CO ₃	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
26	MeCN/H ₂ O	FeAc ₂	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	44
27	MeCN/H ₂ O	Fe(acac)₃	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	63
28	MeCN/H ₂ O	FeCp ₂	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	12
29	MeCN/H ₂ O	FeSO ₄	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	44
30	MeCN/H ₂ O	FeCl ₂	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	53
31	MeCN/H ₂ O	D-i-prpf	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	30
32	MeCN/H ₂ O	-	24 h	RT	"Bu₄NPF ₆	Pt(+)Pt(-)	-	N.D
33 ^c	MeCN	FeCl ₃	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	N.D
34	H ₂ O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
35	DMF/H₂O	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	11
36	MeCN	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
37	acetone $/H_2O$	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	8

38	ethylene	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	18
	carbonate /H₂O							
39	CH_2CI_2/H_2O	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	12
40	MeCN/HFiP	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	N.D
41	MeCN/Formic acid	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	20
42	MeCN/HOAc	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
43	MeCN/ ^t BuOH	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
44	MeCN/EtOH	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	-	Trace
45	MeCN/MeOH	FeCl ₃ ·6H ₂ O	24 h	RT	ⁿ Bu₄NPF ₆	Pt(+)Pt(-)	-	32
46	MeCN/H ₂ O	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	TMEDA ^f	Trace
47	MeCN/H ₂ O	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	$TFA \cdot Et_3N^d$	Trace
48	MeCN/H ₂ O	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	Et_3N^e	57
49	MeCN/H ₂ O	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Pt(+)Pt(-)	DABCO ^f	30
50	MeCN/H₂O	FeCl₃·6H₂O	24 h	RT	″Bu₄NPF ₆	Fe(+)Pt(-)	-	89
51	MeCN/H₂O	FeCl₃·6H₂O	24 h	RT	″Bu₄NPF ₆	Ni(+)Pt(-)	-	87
52	MeCN/H ₂ O	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Al(+)Pt(-)	-	20
53	MeCN/H ₂ O	FeCl₃·6H₂O	24 h	RT	ⁿ Bu ₄ NPF ₆	Cu(+)Pt(-)	-	79
54	MeCN/H ₂ O	FeCl₃·6H₂O	14 h	RT	ⁿ Bu ₄ NPF ₆	Fe(+)Pt(-)	-	24
55	MeCN/H ₂ O	FeCl₃·6H₂O	36 h	RT	ⁿ Bu ₄ NPF ₆	Fe(+)Pt(-)	-	62
56	MeCN/H ₂ O	FeCl₃·6H₂O	48 h	RT	ⁿ Bu ₄ NPF ₆	Fe(+)Pt(-)	-	58
57	MeCN/H ₂ O	FeCl₃·6H₂O	24 h	35	ⁿ Bu ₄ NPF ₆	Fe(+)Pt(-)	-	88
58	MeCN/H ₂ O	FeCl₃·6H₂O	24 h	45	ⁿ Bu ₄ NPF ₆	Fe(+)Pt(-)	-	86
59	MeCN/H ₂ O	FeCl ₃ ·6H ₂ O	24 h	60	ⁿ Bu ₄ NPF ₆	Fe(+)Pt(-)	-	87

^{*a*} Standard conditions: Anode (1.0 *1.0 cm²), Cathode (1.0 *1.0 cm²), **1a** (0.6 mmol), Solvents (6 mL=1/1), Electrolytes (0.05 M), Catalyst (0.2 equiv), 20 mA, Undivided cell, air, 24 h. ^{*b*} Yields were determined using GC-Mass analysis with 1H-benzo[*d*]imidazole as an internal standard. ^{*c*} water removal; ^{*d*} 2M:2M solution (0.5 mL); ^{*e*} 0.5 mL; ^{*f*} 1.0 equiv.

Initially, various electrolytes were screened with water and MeCN as solvent and FeCl₃· $6H_2O$ as catalyst (Entries 1–12). nBu_4NPF_6 proved to be the optimal electrolyte giving product in 60% yield (Entry 5). Next, a series of Lewis acid and iron catalyst were tested (Entries 15–32). The results showed that FeCl₃· $6H_2O$ exhibited the highest catalytic activity than other catalyst. Water and MeCN were found to be the most suitable solvents for this system (Entries 32–45). H₂O plays an important role in this reaction system that cannot proceed for the reaction when removal (Entry 33). Electronic transfer media contribute little to the conversion under constant current (Entries 46–49). Further exploration of electrode (Entries 50-53) showed that Fe(+) Pt(-) were the optimal condition with 89% yield. Finally, the time and temperature screening revealed that 24 h and room temperature were the best choice (Entries 54–59).

Scheme S1: General procedure for the catalytic reactions

An undivided cell was equipped with a magnet stirrer, Fe plate (1.0 *1.0 cm²), Pt net (1.0*10 cm²), as anode electrode and cathode electrode. The substrate secondary phenylamide (0.6 mmol), $^{n}Bu_{4}NPF_{6}$ (0.05 M), FeCl₃·6H₂O (20 %), 3.0 mL of water and 3.0 mL MeCN were placed. The resulting mixture was allowed to stir and electrolyze at constant current conditions (20 mA) at room temperature for 24 hours. Then the reaction mixture was poured into water (10 mL) and extracted with ethyl acetate (10 mL*3). The residue was purified by silica gel column chromatography to obtain the corresponding product. All products were confirmed by nuclear magnetic resonance and mass spectrometry.

The setup for constant current electrolysis

Figure S1. Electrolysis setup (A: Shanghai xirui DJS–292B constant potentiometer; B: Fe plate (1.0 *1.0 cm2), Pt net (1.0*10 cm2), An undivided cell of 10 mL flask; C: Series of electrodes; D: Gram scale reaction device).

Scheme S2: General procedure for gram scale reaction

An undivided cell was equipped with a magnet stirrer, Fe plate $(25^{*}4.0 \text{ cm}^2)$, two Pt net $(10^{*}10 \text{ cm}^2)$, as the working electrode and counter electrode. The substrate secondary phenylamide (6.0 mmol), "Bu₄NPF₆ (0.05 M), FeCl₃·6H₂O (20 %), 20.0 mL of water and 20.0 mL MeCN were placed. The reaction mixture was stirred at a constant current of 60 mA under room temperature for 96 h. Then the reaction mixture was poured into water (150 mL) and extracted with ethyl acetate (100 mL*3). The residue was purified by silica gel column chromatography in a yield around 72%.

Mechanism Studies

Scheme S3: Stepwise dephenylation to get intermediate product:

We have tried to collection intermediate product by reduce reaction time, N– (2–hydroxyphenyl)benzamide (**3a**) and 1,4–benzoquinone (**4a**) were observed by GC/Mass (**Eq S1**). And according to optimised condition, product **2a** was obtained in 60 % yield when 3a was used as starting material (**Eq S2**). **3a**: ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.12 (s, 1H), 8.00 – 7.90 (m, 2H), 7.68 – 7.50 (m, 3H), 7.20 (dd, J = 12.3, 4.6 Hz, 2H), 7.11 (d, J = 8.0 Hz, 1H), 6.95 (td, J = 7.6, 1.4 Hz, 1H), 5.32 (s, 2H); **4a**: ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 4H).

Scheme S4: Steric hindrance effect:

To elucidate the mechanism of this reaction, some reactive site were instead by methyl under the standard conditions. The experiments indicate that Steric hindrance has been shown to affect reaction of ortho C-H activation and electronic attack.

Table S2: Radical scavenger experiments^{*a*}:

2	BHT	0.1	39
	\backslash	0.2	23
	ОН	0.5	Trace
	\rightarrow	1.0	n.d
		2.0	n.d
3	TEMPO	0.1	72
	\frown	0.2	55
		0.5	30
	∕_N ∕	1.0	Trace
	() •	2.0	trace

^{*a*} Standard conditions: substrate (0.6 mmol), H₂O (3 mL), ^{*n*}Bu₄NPF₆ (0.05 M), FeCl₃·6H₂O (0.2 equiv), MeCN/H₂O (6 mL, 1: 1), air, Pt net and Fe plate electrodes (1.0 cm*1.0 cm²), 24 h, room temperature and constant current electrolysis at 20 mA in an undivided cell; ^{*b*} Yields were determined using GC/Mass analysis with 1H-benzo[*d*]imidazole as an internal standard.

Cyclic voltammetry experiment

Cyclic voltammograms were measured using Shanghai chenhua CHI600E electrochemical workstation with electrochemical analysis software, using a conventional three-electrode cell. The working electrode was a Pt disk electrode, The counter and reference electrodes consisted of a Pt wire and a calomel electrode, espectively. The Pt disk working electrode was polished with a polishing cloth before each measurement. the concentration of all tested compounds was 0.1M, if not noted otherwise. The scan rate was 0.1 V/s.

Figure S2. Blank: 0.1M nBu₄NPF₆, MeCN /H2O= 1/1; a: Blank + FeCl₃·6H₂O 0.02 mmol; b: Blank + 1a 0.1mmol + FeCl₃·6H₂O 0.02 mmol; c: Blank + 3a 0.1 mmol + FeCl₃·6H₂O 0.02 mmol

Scheme S5: Deuterium-labeling experiment

A solution of the benzamide (0.3 mmol) in 3 mL of MeCN was treated with D_2O (3 mL). The solution was allowed to stir at room temperature for 24 hours. After the solution was evaporated in vacuo. The product was confirmed by nuclear magnetic resonance and deuterated benzamide at the 23 % D level.

An undivided cell was equipped with a magnet stirrer, Fe plate (1.0 *1.0 cm²), Pt net (1.0*10 cm²), as anode electrode and cathode electrode. The substrate secondary phenylamide (0.6 mmol), $^{n}Bu_{4}NPF_{6}$ (0.05 M), FeCl₃·6H₂O (20 %) , 3.0 mL D₂O and 3.0 mL MeCN were placed. The resulting mixture was allowed to stir and electrolyze at constant current conditions (20 mA) at room temperature for 24 hours. Then the reaction mixture was poured into water (10 mL) and extracted with ethyl acetate (10 mL*3). The residue was purified by silica gel column chromatography to obtain the corresponding product. The product was confirmed by nuclear magnetic resonance and deuterated benzamide at the 55 % D level.

Scheme S6: Procedure for synthesis of Trimethobenzamide

Cul (0.10 equiv), K₂PO₃ (3.0 equiv), 1,10–phenanthroline (0.2 equiv), DMSO (2.0 mL), 3,4,5–trimethoxybenzamide (1.0 equiv) and 2– (4– (bromomethyl)phenoxy) –N,N–dimethylethanamine (1.1 equiv) were added to a Schlenk flask. The reaction mixture was allowed to stir at 90 °C for 48 h. After allowing the reaction to cool to ambient temperature, the mixture was dissolved in MeOH (10 mL) and concentrated under reduced pressure. The crude residue was directly purified by silica gel column chromatography in 72% yield. **3aa:** ¹H NMR (400 MHz, DMSO) δ 9.23 (t, *J* = 5.9 Hz, 1H), 7.37 – 7.23 (m, 4H), 6.94 (d, *J* = 8.6 Hz, 2H), 4.42 (d, *J* = 5.8 Hz, 2H), 4.26 (t, *J* = 5.3 Hz, 2H), 3.84 (s, 6H), 3.71 (s, 3H), 3.22 (t, *J* = 5.3 Hz, 2H), 2.63 (d, *J* = 5.4 Hz, 6H); ¹³C NMR (101 MHz, DMSO) δ 166.82, 166.06, 165.85, 157.15, 153.00, 140.33, 132.94, 129.95, 129.20, 114.88, 105.38, 63.90, 60.51, 56.50, 56.28, 43.92, 42.56; MS [EI, m/z]: 388.20 [M+].

Scheme S7: H₂O¹⁸ experiment

An undivided cell was equipped with a magnet stirrer, Fe plate $(1.0 \times 1.0 \text{ cm}^2)$, Pt net $(1.0 \times 10 \text{ cm}^2)$, as anode electrode and cathode electrode. The substrate secondary phenylamide (0.6 mmol), $^{B}\text{Bu}_4\text{NPF}_6$ (0.05 M), FeCl₃·6H₂O (20 %), 3.0 mL of water, 100 uL H₂O¹⁸ and 3.0 mL MeCN were placed. The resulting mixture was allowed to stir at constant current conditions (20 mA) at room temperature for 24 hours. Then the reaction mixture was poured into water (10 mL) and extracted with ethyl acetate (10 mL*3). The residue was confirmed by Gas chromatography—mass spectra.

Experimental procedures and characterisation data

2a: benzamide¹

NH₂

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.1 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 6.22 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 169.62, 133.36, 132.01, 128.63, 127.39; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₈NO 122.0606; Found 122.0612.

2b: 2-aminobenzamide²

¹H NMR (400 MHz, DMSO) δ 7.72 (s, 1H), 7.53 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.13 (ddd, *J* = 8.4, 7.1, 1.5 Hz, 1H), 7.07 (s, 1H), 6.68 (dd, *J* = 8.2, 1.0 Hz, 1H), 6.56 (s, 2H), 6.48 (ddd, *J* = 8.1, 7.1, 1.2 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 171.76, 150.65, 132.35, 129.20, 116.85, 114.82, 114.12; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₉N₂O 137.0709; Found 137.0701.

2c: 2-methoxybenzamide³

NH₂ OCH₃

¹**H NMR** (400 MHz, DMSO) δ 7.81 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.64 (s, 1H), 7.56 – 7.44 (m, 2H), 7.13 (d, *J* = 7.9 Hz, 1H), 7.03 (td, *J* = 7.6, 1.0 Hz, 1H), 3.89 (s, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 166.75, 157.67, 132.89, 131.17, 123.17, 120.83, 112.41, 56.25; **HRMS (ESI) m/z**: $[M+H]^+$ Calcd for C₈H₁₀NO₂ 152.0706; Found 152.0711.

2d: 2-bromobenzamide³

¹H NMR (400 MHz, DMSO) δ 7.87 (s, 1H), 7.66 – 7.62 (m, 1H), 7.57 (s, 1H), 7.45 – 7.39 (m, 2H), 7.34 (ddd, J = 8.0, 6.1, 3.1 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 169.51, 139.82, 133.15, 131.09, 129.00, 127.94, 119.06; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₇BrNO 199.9711; Found 199.9719.

2e: 2-chlorobenzamide²

¹H NMR (400 MHz, DMSO) δ 7.87 (s, 1H), 7.58 (s, 1H), 7.50 – 7.35 (m, 4H); ¹³C NMR (101 MHz, DMSO) δ 168.61, 137.62, 131.00, 130.08, 130.05, 129.11, 127.47; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₇CINO 156.0211; Found 156.0209.

2f: 2-iodobenzamide⁴

¹**H** NMR (400 MHz, DMSO) δ 7.87 (dd, J = 7.9, 0.9 Hz, 1H), 7.82 (s, 1H), 7.51 (s, 1H), 7.43 (td, J = 7.5, 1.1 Hz, 1H), 7.34 (dd, J = 7.6, 1.7 Hz, 1H), 7.18 – 7.12 (m, 1H); ¹³**C** NMR (101 MHz, DMSO) δ 171.15, 143.60, 139.61, 131.04, 128.38, 128.23, 93.59; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₇INO 247.9572; Found 247.9573. **2g: 4-aminobenzamide**²

¹H NMR (400 MHz, DMSO) δ 7.62 – 7.55 (m, 2H), 7.50 (s, 1H), 6.82 (s, 1H), 6.58 – 6.46 (m, 2H), 5.59 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 168.47, 152.11, 129.57, 121.43, 112.90; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₇H₈N₂O 137.0709; Found 137.0707.

2h: 2-nitrobenzamide³

NH₂ NO₂

¹**H** NMR (400 MHz, DMSO) δ 8.14 (s, 1H), 8.00 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.77 (td, *J* = 7.5, 1.2 Hz, 1H), 7.73 – 7.59 (m, 3H); ¹³C NMR (101 MHz, DMSO) δ 167.60, 147.70, 133.78, 133.04, 131.07, 129.30, 124.40; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₇H₆N₂O₃Na 189.0271; Found 189.0270.

2i: 2-iodo-5-methylbenzamide⁵

NH₂

¹H NMR (400 MHz, DMSO) δ 7.77 (s, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.47 (s, 1H), 7.18 (d, *J* = 1.7 Hz, 1H), 7.01 – 6.94 (m, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 171.15, 143.40, 139.39, 138.00, 131.81, 128.98, 89.50, 20.79; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₈H₈INONa 283.9548; Found 283.9550.

2j: 3-aminobenzamide⁶

NHa $\dot{N}H_2$

¹H NMR (400 MHz, DMSO) δ 7.71 (s, 1H), 7.23 – 6.95 (m, 4H), 6.68 (ddd, *J* = 8.0, 2.3, 1.0 Hz, 1H), 5.18 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 169.16, 149.03, 135.67, 128.97, 116.91, 115.11, 113.56; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₇H₈N₂O 137.0709; Found 137.0715.

2k: 3-methylbenzamide³

NH₂

¹H NMR (400 MHz, DMSO) δ 7.92 (s, 1H), 7.74 – 7.62 (m, 2H), 7.33 (d, J = 4.6 Hz, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 168.45, 137.87, 134.71, 132.20, 128.53, 128.52, 125.03, 21.41; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₁₀NO 136.0757; Found 136.0755. **2I: 3-fluorobenzamide**³

 NH_2

¹**H NMR** (400 MHz, DMSO) δ 8.07 (s, 1H), 7.76 – 7.70 (m, 1H), 7.67 (ddd, *J* = 10.1, 2.5, 1.6 Hz, 1H), 7.58 – 7.46 (m, 2H), 7.42 – 7.33 (m, 1H); ¹³**C NMR** (101 MHz, DMSO) δ 166.94 (d, *J* = 2.4 Hz), 162.42 (d, *J* = 244.42 Hz), 137.16 (d, *J* = 6.6 Hz) 130.84 (d, *J* = 8.0 Hz) 124.06 (d, *J* = 2.8 Hz), 118.57 (d, *J* = 21.2 Hz), 114.65 (d, *J* = 22.4 Hz); **HRMS (ESI) m/z**: [M+H]⁺ Calcd for C₇H₇FNO 140.0506; Found 140.0505.

2m: 4-methylbenzamide³

 NH_2

¹**H NMR** (400 MHz, DMSO) δ 7.89 (s, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 7.9 Hz, 3H), 2.35 (s, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 168.21, 141.49, 131.94, 129.18, 127.95, 21.41; **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₈H₁₀NO 136.0762; Found 136.0760.

2n: 4-methoxybenzamide³

NH₂ H₂CO

¹H NMR (400 MHz, DMSO) δ 7.90 – 7.79 (m, 3H), 7.18 (s, 1H), 7.00 – 6.95 (m, 2H), 3.81 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 167.86, 162.02, 129.79, 126.97, 113.83, 55.77; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₈H₁₀NO₂ 152.0711; Found 152.0722.

20: 4-chlorobenzamide²

NH₂ CI

¹H NMR (400 MHz, DMSO) δ 8.05 (s, 1H), 7.92 – 7.86 (m, 2H), 7.56 – 7.51 (m, 2H), 7.47 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 167.24, 136.53, 133.48, 129.86, 128.76; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₇H₇CINO 156.0211; Found 156.0201.

2p: 4-acetylbenzamide²

¹H NMR (400 MHz, DMSO) δ 8.15 (s, 1H), 8.04 – 7.97 (m, 4H), 7.57 (s, 1H), 2.62 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 198.20, 167.53, 139.10, 138.56, 128.55, 128.21, 27.44; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₉H₁₀NO₂ 164.0706; Found 164.0701.

2q: 4-(dimethylamino)benzamide⁶

¹H NMR (400 MHz, DMSO) δ 7.76 – 7.71 (m, 2H), 7.63 (s, 1H), 6.92 (s, 1H), 6.70 – 6.66 (m, 2H), 2.96 (s, 6H); ¹³C NMR (101 MHz, DMSO) δ 168.36, 152.57, 129.36, 121.41, 111.16, 40.19; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₉H₁₂N₂O 165.1022; Found 165.1019.

2r: 4-phenyl benzamide⁶

¹H NMR (400 MHz, DMSO) δ 7.96 (d, J = 8.3 Hz, 2H), 7.72 – 7.67 (m, 2H), 7.63 (d, J = 8.1 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.3 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 169.29, 140.36, 130.14, 129.40, 128.04, 127.27, 127.20, 126.37, 126.32; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₂NO 198.0919; Found 198.0922. 2s: 4-nitrobenzamide³

0₂N

F₃C

¹H NMR (400 MHz, DMSO) δ 8.34 – 8.26 (m, 3H), 8.12 – 8.06 (m, 2H), 7.74 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 166.66, 149.50, 140.43, 129.37, 123.91; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₇H₇N₂O₃ 167.0451; Found 167.0458. 2t: 4-(trifluoromethyl)benzamide³

NH₂

¹**H NMR** (400 MHz, DMSO) δ 8.20 (s, 1H), 8.07 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.2 Hz, 2H), 7.63 (s, 1H); ¹³**C NMR** (101 MHz, DMSO) δ 167.13, 138.55, 131.61 (q, J = 31.8 Hz), 128.78, 125.73 (q, J = 3.8 Hz), 123.07; **HRMS (ESI) m/z**: [M+Na]⁺ Calcd for C₈H₇F₃NONa 212.0299; Found 212.0297.

2u: 3,4,5-trimethoxybenzamide⁷

H₃CO NH₂ H₃CO осн₃

¹H NMR (400 MHz, DMSO) δ 7.95 (s, 1H), 7.33 (s, 1H), 7.22 (s, 2H), 3.82 (s, 6H), 3.70 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 167.75, 152.95, 140.40, 129.90, 105.51, 60.50, 56.42; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₁₀H₁₃NO₄ 212.0928; Found 212.0929.

2v: 4-ethylbenzamide15

NH₂

¹**H NMR** (400 MHz, DMSO) δ 7.90 (s, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 3H), 2.64 (q, J = 7.6 Hz, 2H), 1.19 (t, J = 7.6 Hz, 3H); ¹³**C NMR** (101 MHz, DMSO) δ 168.28, 147.66, 132.23, 128.04, 128.00, 28.48, 15.82; **HRMS (ESI) m/z**: [M+Na]⁺ Calcd for C₉H₁₁NONa 172.0738; Found 172.0733.

2w: thiophene-3-carboxamide⁸

NH₂

¹H NMR (400 MHz, DMSO) δ 8.13 (dd, J = 3.0, 1.3 Hz, 1H), 7.78 (s, 1H), 7.56 (dd, J = 5.0, 3.0 Hz, 1H), 7.48 (dd, J = 5.0, 1.3 Hz, 1H), 7.23 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 164.12, 138.47, 129.45, 127.61, 127.00; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₅H₅NOS 128.0165; Found 125.0168.

2x: nicotinamide²

NH₂

¹**H** NMR (400 MHz, DMSO) δ 9.04 (dd, J = 2.2, 0.7 Hz, 1H), 8.70 (dd, J = 4.8, 1.7 Hz, 1H), 8.24 – 8.13 (m, 2H), 7.61 (s, 1H), 7.50 (ddd, J = 7.9, 4.8, 0.8 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 166.90, 152.35, 149.13, 135.60, 130.11, 123.86; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆H₇N₂O 123.0558; Found 123.0555.

2y: 2-(2-oxopyrrolidin-1-yl)acetamide13

¹H NMR (400 MHz, DMSO) δ 7.39 (s, 1H), 7.09 (s, 1H), 3.75 (s, 2H), 3.36 (t, *J* = 7.1 Hz, 2H), 2.27 – 2.18 (m, 2H), 1.98 – 1.88 (m, 2H); ¹³C NMR (101 MHz, DMSO) δ 174.86, 170.16, 47.73, 45.27, 30.43, 17.80; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₆H₁₀N₂O₂Na 165.0634; Found 165.0634.

2z: 2-naphthamide²

NH₂

¹H NMR (400 MHz, DMSO) δ 8.50 (s, 1H), 8.16 (s, 1H), 8.06 – 7.93 (m, 4H), 7.66 – 7.55 (m, 2H), 7.49 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 168.43, 134.62, 132.61, 132.10, 129.32, 128.27, 128.22, 128.04, 128.02, 127.10, 124.86; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₁₁H₁₀NO 172.0757; Found 172.0756.

2aa: cyclopropanecarboxamide²

 NH_2

¹H NMR (400 MHz, DMSO) δ 7.51 (s, 1H), 6.75 (s, 1H), 1.51 (tt, *J* = 7.3, 5.2 Hz, 1H), 1.20 (dd, *J* = 17.1, 9.9 Hz, 1H), 0.63 (dd, *J* = 6.0, 4.6 Hz, 3H); ¹³C NMR (101 MHz, DMSO) δ175.09, 13.69, 6.66; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₄H₈NO 86.0605; Found 86.0599.

2bb: 2,2,3,3-tetramethylcyclopropanecarboxamide⁹

 NH_2

¹H NMR (400 MHz, DMSO) δ 7.21 (s, 1H), 6.48 (s, 1H),1.18 (s, 6H), 1.14 (s, 6H), 1.12 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 173.36, 35.30, 23.72, 16.90; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₈H₁₆NO 142.1226; Found 142.1223. 2cc: 3,3-dimethylbutanamide¹⁰

¹H NMR (400 MHz, DMSO) δ 7.31 – 7.06 (m, 1H), 6.61 (d, *J* = 42.5 Hz, 1H), 1.92 (s, 2H), 0.96 (s, 9H); ¹³C NMR (101 MHz, DMSO) δ 173.49, 48.98, 30.63, 30.16; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₆H₁₃NONa 138.0895; Found 138.0891. 2dd: 5-methylhexanamide¹¹

NH₂

¹**H NMR** (400 MHz, DMSO) δ 7.61 (s, 1H), 7.12 (s, 1H), 3.32 – 3.19 (m, 1H), 2.46 (t, *J* = 7.2 Hz, 2H), 1.75 – 1.37 (m, 4H), 0.81 (dt, *J* = 11.2, 7.4 Hz, 6H); ¹³**C NMR** (101 MHz, DMSO) δ 170.99, 42.78, 21.44, 16.97, 13.93, 12.21; **HRMS (ESI) m/z**: [M+H]⁺ Calcd for C₇H₁₆NO 130.1226; Found 130.1223.

2ee: 6,7-dimethyloctanamide¹² O NH₂

¹H NMR (400 MHz, DMSO) δ 7.67 (s, 1H), 7.13 (s, 1H), 3.46 (dd, J = 8.7, 5.5 Hz, 1H), 2.53 – 2.50 (m, 3H), 1.69 – 1.08 (m, 6H), 0.86 – 0.82 (m, 9H); ¹³C NMR (101 MHz, DMSO) δ 171.08, 38.66, 37.04, 27.46, 26.04, 23.34, 22.78, 22.67, 22.45; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₀H₂₁NONa 194.1521; Found 194.1518.

2ff: 2-phenylacetamide⁶

¹H NMR (400 MHz, DMSO) δ 7.47 (s, 1H), 7.32 – 7.19 (m, 5H), 6.89 (s, 1H), 3.37 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 172.67, 136.96, 129.51, 128.60, 126.71, 42.72; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for C₈H₉NONa 158.0582; Found 158.0576.

2gg: 4-phenylbutanamide³

¹**H** NMR (400 MHz, DMSO) δ 7.32 – 7.23 (m, 3H), 7.21 – 7.15 (m, 3H), 6.74 (s, 1H), 2.61 – 2.53 (m, 2H), 2.07 (t, *J* = 7.5 Hz, 2H), 1.85 – 1.73 (m, 2H); ¹³**C** NMR (101 MHz, DMSO) δ 174.48, 142.29, 128.76, 128.72, 126.18, 35.17, 35.01, 27.35; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₀H₁₃NONa 186.0895; Found 186.0890.

2hh: 2-(naphthalen-1-yl)acetamide⁶

¹**H** NMR (400 MHz, DMSO) δ 8.13 – 8.05 (m, 1H), 7.93 (dd, *J* = 7.1, 2.3 Hz, 1H), 7.82 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.60 – 7.41 (m, 5H), 6.99 (s, 1H), 3.87 (s, 2H); ¹³**C** NMR (101 MHz, DMSO) δ 172.59, 133.79, 133.41, 132.48, 128.80, 128.29, 127.43, 126.36, 126.05, 125.96, 125.94, 124.76, 40.62; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for C₁₂H₁₂NO 186.0913; Found 186.0916.

2ii: adamantane-1-carboxamide⁶

¹**H** NMR (400 MHz, DMSO) δ 6.80 (d, *J* = 111.4 Hz, 2H), 1.94 (s, 3H), 1.74 (d, *J* = 2.7 Hz, 6H), 1.70 – 1.59 (m, 6H); ¹³**C** NMR (101 MHz, DMSO) δ 179.80, 39.30, 39.21, 36.62, 28.14; HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₁₁H₁₈NO 180.1388; Found 180.1366.

2jj: (R)-pyrrolidine-2-carboxamide¹⁴ (from (R)-*N*-phenylpyrrolidine-2-carboxamide)

 NH_2

¹H NMR (400 MHz, DMSO) δ 7.17 (d, *J* = 144.4 Hz, 2H), 3.42 (dd, *J* = 8.7, 5.5 Hz, 1H), 3.07 - 2.69 (m, 3H), 2.02 - 1.83 (m, 1H), 1.70 - 1.52 (m, 3H); ¹³C NMR (101 MHz, DMSO) δ 177.46, 60.67, 47.22, 30.96, 26.29; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₅H₁₁N₂O 115.0866; Found 115.0862.

2kk: 4'-((1,7'-dimethyl-2'-propyl-1H,3'H-[2,5'-bibenzo[d]imidazol]-3'-yl)methyl)-[1,1'-biphenyl]-2-carboxamide¹⁶

¹H NMR (400 MHz, DMSO) δ 7.76 (s, 1H), 7.68 – 7.56 (m, 3H), 7.51 – 7.15 (m, 11H), 5.62 (s, 1H), 3.83 (s, 1H), 2.94 (t, J = 7.6 Hz, 1H), 2.64 (s, 1H), 1.91 – 1.76 (m, 1H), 1.02 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, DMSO) δ 171.50, 156.63, 154.50, 143.14, 142.96, 140.18, 138.77, 137.81, 137.13, 136.41, 135.17, 130.28, 129.63, 129.19, 128.71, 127.93, 127.50, 126.83, 123.76, 123.68, 122.49, 122.24, 119.15, 110.86, 109.72, 46.49, 32.23, 29.20, 21.21, 16.93, 14.33. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₃H₃₁N₅ONa 536.2421; Found 536.2392.

References

- 1. B. Xu, Q. Jiang, A. Zhao, J. Jia, Q. Liu, W. Luo and C. Guo, Chem. Commun., 2015, 51, 11264.
- 2. H. Chen, W. Dai, Y. Chen, Q. Xu, J. Chen, L. Yu, Y. Zhao, M. Ye and Y. Pan, Green Chem., 2014, 16, 2136.
- 3. Y.-Q. Miao, J.-X. Kang, Y.-N. Ma and X. Chen, Green Chem., 2021, 23, 3595.
- R. G. Chary, G. Dhananjaya, K. V. Prasad, S. Vaishaly, Y. S. S. Ganesh, B. Dulla, K. S. Kumar and M. Pal, Chem. Commun., 2014, 50, 6797.
- 5. S. B. Munoz, V. Krishnamurti, P. Barrio, T. Mathew and G. K. S. Prakash, Org. Lett., 2018, 20, 1042.
- 6. J. Chen, Y. Xia and S. Lee, Org. Lett., 2020, 22, 3504.
- 7. C. Tang and N. Jiao, Angew. Chem. Int. Ed., 2014, 53, 6528.
- 8. J. Liu, C. Zhang, Z. Zhang, X. Wen, X. Dou, J. Wei, X. Qiu, S. Song and N. Jiao, Science, 2020, 367, 281.
- 9. H.-L. Wang, W.-F. Jiang and Z.-Q. Li, J. Chem. Res., 2009, 8, 508.
- 10. S. Brammer, U. Lüning and C. Kühl, Eur. J. Org. Chem., 2002, 23, 4054.
- 11. A. Fawcett, M. J. Keller, Z. Herrera and J. F. Hartwig, Angew. Chem. Int. Ed., 2021, 60, 8276.
- 12. W. Huang, Y. Wang, Y. Weng, M. Shrestha, J. Qu and Y. Chen, Org. Lett., 2020, 22, 3245.
- 13. T. Liu, W. Jia, Q. Xi, Y. Chen, X. Wang and D. Yin, J. Org. Chem., 2018, 83, 1387.
- 14. Z. Li, X. Li, X. Ni and J.-P. Cheng, Org. Lett., 2015, 17, 1196.
- 15. X. Qi, H.-J. Ai, C.-X. Cai, J.-B. Peng, J. Ying and X.-F. Wu, Eur. J. Org. Chem., 2017, 48, 7222.
- 16. A.-M. Schoepf, S. Salcher, P. Obexer and R. Gust, *Eur. J. Med. Chem.*, 2020, **195**, 112258.

¹H NMR and ¹³C NMR spectra for the products

2a: benzamide

2b: 2-aminobenzamide

2c: 2-methoxybenzamide

2d: 2-bromobenzamide

2e: 2-chlorobenzamide

2f: 2-iodobenzamide

2g: 4-aminobenzamide

2h: 2-nitrobenzamide

2i: 2-iodo-5-methylbenzamide

2j: 3-aminobenzamide

2k: 3-methylbenzamide

2I: 3-fluorobenzamide

2m: 4-methylbenzamide

2n: 4-methoxybenzamide

2o: 4-chlorobenzamide

2p: 4-acetylbenzamide

2q: 4-(dimethylamino)benzamide

2r: 4-phenyl benzamide

2s: 4-nitrobenzamide

2t: 4-(trifluoromethyl)benzamide

2u: 3,4,5-trimethoxybenzamide

2w: thiophene-3-carboxamide

2x: nicotinamide

2z: 2-naphthamide

2cc: 3,3-dimethylbutanamide

2dd: 5-methylhexanamide

2ee: 6,7-dimethyloctanamide

2ff: 2-phenylacetamide

2gg: 4-phenylbutanamide

2hh: 2-(naphthalen-1-yl)acetamide

2ii: adamantane-1-carboxamide

P51

2y: 2-(2-oxopyrrolidin-1-yl)acetamide

2jj: (R)-pyrrolidine-2-carboxamide

2v: 4-ethylbenzamide

2kk: 4'-((1,7'-dimethyl-2'-propyl-1H,3'H-[2,5'-bibenzo[d]imidazol]-3'-yl)methyl)-[1,1'-biphenyl]-2-carboxamide