Supplementary Material

Innovative Localized Surface Plasmon Resonance Sensing Technique for a Green Spectrofluorimetric Assay of Ketoprofen, Paracetamol and Chlorzoxazone in Pharmaceutical Preparations and Biological Fluids

Nora A. Abdallah^{*}, Mona E. Fathy, Manar M. Tolba, Amina M. El-Brashy and Fawzia A. Ibrahim

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy,

Mansoura University, Mansoura 35516, Egypt.

*Corresponding author.

Tel.: +20502246253, Fax: +20502363641, E-mail: noraabdallah91@mans.edu.eg

Figure S1: Fluorescence spectra of 2 μ g/mL CLX in ethanol, a is excitation spectrum and a^{*} is emission spectrum.

Figure S2: Influence of pH on the ΔF using 3 µg/mL of the studied drugs and 1 ml of Britton Robinson buffer pH (3-10).

Figure S3: Effect of contact time between silver NPs and 3 μ g/mL of eah drug from starting to 30 min.

 Table S1: Linearity range comparison of fluorometric methods for the determination of KPN.

Table S2: Assay results for determination of the raw materials of KPN, PAR andCLX by the proposed method.

Figure S2

Figure S3

Table S1: Linearity range comparison of reported methods and proposed method for the determination of KPN.

Method	Linearity range	Reference	
Ion chromatography with a fluorescence detector	$0.2 - 1.5 \text{ mg kg}^{-1}$	[5]	
Derivative IR spectroscopy	(1000 to 4000) µg/ml	[6]	
HPLC	0.025-0.5 mg/mL	[7]	
Electrochemical method	9 µM to 5 mM	[8]	
Liquid chromatography/tandem mass spectrometry following automated solid-phase extraction in the 96-well format	0.05 to 2500 ng/ml	[9]	
Gas chromatography-mass spectrometry	0.6-5000 ng/kg	[10]	
Terbium sensitized luminescence method	2.8 x 10 ⁻⁷⁻ 3.1 x 10 ⁻⁶ M	[11]	
Copper-doped CdS quantum dots and zinc oxide nanorods	0.05–35.5 μM	[12]	
Hybrid nanoparticle-based fluorescence switch	0–25.0 µM	[13]	
Quenching of quantum dots	0.03–0.393 mM	[14]	
Surface Molecularly Imprinted Carbon Dots	0.039–3.9 μM	[15]	
Quenching of silver nanoparticles	0.0019-0.019 μΜ	Suggested method	

	KPN			PAR			CLX		
	Conc. taken (µg/mL)	Conc. found (µg/mL)	% Found ^a	Conc. taken (µg/mL)	Conc. found (µg/mL)	% Found ^a	Conc. taken (µg/mL)	Conc. found (µg/mL)	% Found ^a
	0.5	0.498	99.60	0.15	0.15	100.00	0.5	0.493	98.60
	1.0	0.992	99.20	0.3	0.304	101.33	1.0	0.989	98.90
	1.5	1.496	99.73	0.9	0.885	98.33	2.0	2.007	100.35
	2.5	2.513	100.52	1.5	1.503	100.20	3.0	3.013	100.43
	3.0	3.025	100.83	1.8	1.802	100.11	4.0	4.037	100.93
	4.0	4.013	100.33	2.4	2.407	100.29	5.0	5.028	100.56
	5.0	4.951	99.02	3	2.997	99.90	6.0	6.057	100.95
							7.0	6.955	99.36
							8.0	8.006	100.08
							9.0	8.939	99.32
Mean			99.98			100.023			99.95
± S.D.			0.678			0.885			0.844

Table S2: Assay results for determination of the raw materials of KPN, PAR and CLX by

 the proposed method.

^a Average of three separate determinations