A Practical Flow Synthesis of 1,2,3-Triazoles

Dawid Drelinkiewicz^a, Richard J. Whitby^a

^a School of Chemistry, Faculty of Engineering and Physical Sciences, The University of Southampton, University Road, Southampton, SO17 1BJ, UK

Supporting Information

Table of Contents

1.	General methods:
2.	Experimental Procedures:
	Procedure A: Synthesis of Copper-on-Charcoal ²¹ :
	Procedure B: General procedure for Copper-on-Charcoal catalysed CuAAC reaction performed in flow system:
	Procedure C: Calibration of IR spectrometer:5
3.	Trials employing metallic copper powder as CuAAC reaction catalyst:
	Procedure D: Tests of metallic copper as CuAAC reaction catalysts:
	Procedure E: Activation of metallic copper surface with iodine:10
	Procedure F: Activation of metallic copper surface with hydrogen peroxide:10
4.	Procedures, Purification and Characterization Data of 1H-1,2,3-Triazoles:13
	1,4-Diphenyl-1 <i>H</i> -1,2,3-triazole (3a):13
	1-Phenyl-4-(4- <i>tert</i> -butylphenyl)-1 <i>H</i> -1,2,3-triazole (3b):13
	1-(Naphthalen-1-yl)-4-phenyl-1H-1,2,3-triazole (3c):13
	2-(1-Phenyl-1 <i>H</i> -1,2,3-triazol-4-yl)ethan-1-ol (3d):13
	4-(1-Phenyl-1 <i>H</i> -1,2,3-triazol-4-yl)butan-1-ol (3e):14
	(1-Phenyl-1 <i>H</i> -1,2,3-triazol-4-yl)methyl benzoate (3f):14
	4-Octyl-1-phenyl-1 <i>H</i> -1,2,3-triazole (3g):14
	4-(((<i>tert</i> -Butyldimethylsilyl)oxy)methyl)-1-phenyl-1 <i>H</i> -1,2,3-triazole (3h):14
	1-Benzyl-4-phenyl-1 <i>H</i> -1,2,3-triazole (3i):15
	1-Cyclohexyl-4-phenyl-1 <i>H</i> -1,2,3-triazole (3j):15
	1-Butyl-4-phenyl-1 <i>H</i> -1,2,3-triazole (3k):15
	1-Cyclohexyl-4-octyl-1 <i>H</i> -1,2,3-triazole (3I):15
	(1-Butyl-1 <i>H</i> -1,2,3-triazol-4-yl)methyl benzoate (3m):16
	1-(2-Methoxyphenyl)-4-phenyl-1 <i>H</i> -1,2,3-triazole (3n):16
	1-(3-Methoxyphenyl)-4-phenyl-1 <i>H</i> -1,2,3-triazole (3o):16

1-(4-Methoxyphenyl)-4-phenyl-1 <i>H</i> -1,2,3-triazole (3p):	16
1-Phenyl-4-(4-methoxyphenyl)-1 <i>H</i> -1,2,3-triazole (3q):	17
N,N-Dimethyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)aniline (3r):	17
2-((4-Phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile (3s):	17
1-(4-Chlorobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3t):	17
4-Phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (3u):	
Ethyl 1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole-4-carboxylate (3v):	
1-Phenyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (3w):	
1-(4-Nitrophenyl)-4-phenyl-1 <i>H</i> -1,2,3-triazole (3x):	
1-Phenyl-4-(4-nitrophenyl)-1 <i>H</i> -1,2,3-triazole (3y):	19
1-(2,6-Difluorobenzyl)-1 <i>H</i> -1,2,3-triazolyl-4-carboxylic acid ethyl ester (3z):	19
3'-Deoxy-3'-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-((2R,4S,5S)-5-(hydroxym phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3F	ethyl)-4-(4- /)-dione (3aa): 20
1,3-Bis(1-phenyl-1 <i>H</i> -1,2,3-triazol-4-yl)propane (3ab):	20
1-Phenyl-1H-1,2,3-triazolyl-4-carboxylic acid ethyl ester (3ac):	21
1-(3β)-Cholest-5-en-3-yl-4-phenyl-1 <i>H</i> -1,2,3-triazole, 1-((3 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,10 <i>R</i> ,13 <i>R</i> ,14 <i>S</i> ,17 dimethyl-17-((<i>R</i>)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetra cyclopenta[<i>a</i>]phenanthren-3-yl)-4-phenyl-1 <i>H</i> -1,2,3-triazole (3ad):	R)-10,13- decahydro-1 <i>H</i> - 21
1-Phenyl-1 <i>H</i> -1,2,3-triazole (3ae):	22
1-(2,6-Difluorobenzyl)-1H-1,2,3-triazole (3af):	22
4-Methyl-1-phenyl-1 <i>H</i> -1,2,3-triazole (3ag):	22
1-Benzyl-4-methyl-1 <i>H</i> -1,2,3-triazole (3ah):	22
1-Phenyl-4-propyl-1H-1,2,3-triazole (3ai):	23
1-Phenyl-4-(trimethylsilyl)-1 <i>H</i> -1,2,3-triazole (3aj):	23
Rufinamide, 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide (4):	23
1-(2,6,-Difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid:	23
5. Copies of NMR, UV-Vis, FT-ATR-IR and MS spectra of 1,2,3-triazoles:	25
6. References	87

1. General methods:

All solvents and commercially available chemicals were used as received.

NMR spectra were obtained on a Bruker DPX400 MHz spectrometer. ¹H chemical shifts are reported as values in ppm referenced to the deuterated solvent main peak. The following abbreviations are used to assign multiplicity: s = singlet, d = doublet, t=triplet, q = quartet, qu = quintet, sx = sextet, hpt = heptet, oct = octet, br = broad. Coupling constants, J, are measured in Hertz (Hz) and if indicated are reported as ^XJ_{Y-Z}, where X indicates number of bonds between coupled nuclei and Y-Z indicates the nuclei. ¹³C chemical shifts are reported as values in ppm referenced to the main peak of deuterated solvent and are proton decoupled and fluorine coupled. If indicated that neutral CDCl₃ was used as a solvent, chloroform-d₁ was filtrated through K₂CO₃ directly prior to use. If indicated, in the ¹³C NMR spectra the nature of carbons (CH, CH₂ or CH₃) was determined by DEPT-135 experiment.

Mass spectrometry samples were analysed using a MaXis (Bruker Daltonics, Bremen, Germany) time of flight (TOF) mass spectrometer. Samples were introduced to the mass spectrometer via a Dionex Ultimate 3000 autosampler and UHPLC pump. Ultrahigh performance liquid chromatography was performed using a Waters, Acquity UPLC BEH C18 (50 mm x 2.1 mm 1.7um) column. Gradient elution from 5% acetonitrile (0.2% formic acid) to 100% acetonitrile (0.2% formic acid) was performed in five minutes at 0.6 mL/min. High resolution positive/negative ion electrospray ionisation mass spectra were recorded.

All *in situ* IR measurements were recorded on Bruker ALPHA FT-IR at room temperature using OPUS[™] Software in transmission mode. Data was measured from 4000 to 375 cm⁻¹ with 2 cm⁻¹ resolution. Harrick's DLC 2[™] Demountable Liquid Flow Cell with ZnSe windows and 500 µm spacers were connected to the flow system at the indicated positions. Absorptions are given in atomic unit [a. u.] and wavelength are given in wavenumbers [cm⁻¹]. Note that recorded IR spectra are saturated at regions of used solvents absorption. Fourier transform attenuated total reflectance infrared spectroscopy (FT-ATR-IR) spectra were recorded by using Thermo Scientific Nicolet IR 200 FT-IR spectrometer with a single-reflection ATR head and OMNIC[™] software.

UV-Vis spectroscopy measurements were recorded with the Ocean Optics DH-2000-BAL UV spectrometer at room temperature.

Molar extinction coefficients were determined by plotting absorption vs concentration graph and using Beer-Lambert law, accordingly to the equation below, by fitting a linear function to the obtained data.

$$A = \varepsilon \cdot c \cdot l$$

Where:A – absorption [a.u.] ϵ – molar extinction coefficient [M⁻¹ cm⁻¹]c – sample concentration [M]I – path length [cm]

Thin-layer chromatography was carried out on Merck silica gel plates, which were visualised under UV irradiation of 254 nm and/or by staining with aqueous $KMnO_4$, methanolic H_2SO_4 , PMA or iodine. Column chromatography was performed with Merck silica gel 60 using solvent ratios as volumes before mixing described in the method.

The Vapourtec[®] R series Integrated Flow Chemistry System (R2+) was the platform used for the flow experiments. Grant Optima[™] TXF200 heated oil bath with high-temperature silicone oil was used for precise reaction temperature control.

2. Experimental Procedures:

Azides of low molecular weight (more than 25% nitrogen content) should not be isolated from solution since the **concentrated material is likely to be dangerously explosive**. Disposal procedure for organic azides can be found in *Hazardous Laboratory Chemicals Disposal Guide*.¹

The following compounds were prepared by the literature methods and had characterisation data consistent with literature: phenyl azide², 1-azido-2-methoxybenzene³, 1-azido-3-methoxybenzene³, 1-azido-4-methoxybenzene³, 1-azido-4-nitrobenzene⁴, benzyl azide⁵, cyclohexyl azide⁶, *n*-butyl azide⁷, 2,6-difluorobenzyl azide⁸, 1-naphthalene azide⁹, propargyl benzoate¹⁰, 1-ethynyl-4-methoxybenzene¹¹, 1-ethynyl-4-nitrobenzene¹², 2-butynoic acid¹³, 2-hexynoic acid^{13,14}, propiolamide¹⁵, 4-azido-*N*,*N*-dimethylaniline¹⁶, 2-(azidomethyl)benzonitrile¹⁷, 4-chlorobenzyl azide¹⁸, 4-(trifluoromethyl)benzyl azide¹⁹, and 3β-azido-5-cholestene²⁰.

Procedure A: Synthesis of Copper-on-Charcoal²¹:

Activated carbon (50.0 g, Fisher Chemical C/4040/60) was added to a solution of $Cu(NO_3)_2 \cdot 2.5H_2O$ (10.7 g, 46.0 mmol) in deionized water (100 mL), and further deionized water (100 mL) was added to wash down the sides of the flask. The flask was loosely capped and stirred under air for 30 min and then submerged in an ultrasonic bath for 7 h. Subsequent washing with toluene and air drying (3 h) by vacuum filtration yielded "wet" Cu/C. The catalyst was further dried in vacuo at 90 °C for 4 h, then overnight at rt to obtain dry Cu/C.

Procedure B: General procedure for Copper-on-Charcoal catalysed CuAAC reaction performed in flow system:

Flow stream containing 0.10 M solution of azide (1.0 eq.) and 0.13 M solution of alkyne (1.3 eq.) in DCM was directed with 0.75 mL·min⁻¹ to the catalytic column (stainless steel Restek 4.6 mm ID x 150 mm column filled with 860±7 mg Cu/C, total volume of 2.49 mL, effective volume of 1.61 mL, 1.01 mmol Cu per 1.0 g of Cu/C, 0.869±0.007 mmol Cu) submerged in an oil bath at 110 °C. Additional cooling coil (1 m, 1.00 mm ID, stainless steel) submersed in water (at approx. 23 °C) was placed after the reactor to cool down reaction mixture. IR measurement cell was placed after the BPR (250 psi). Flow equipment was controlled with python script. Reaction mixture was passed through Cu/C catalytic columns for 800 s resulting in elution of 10.0 mL of reaction mixture, which was collected, solvent was then removed and obtained solid residue was preadsorbed onto silica and purified by column chromatography.

Procedure C: Calibration of IR spectrometer:

Samples of 1,4-diphenyl-1*H*-1,2,3-triazole and phenyl azide with various concentrations were prepared and measured using IR spectrometer. The samples concentrations and maxima of absorptions at characteristic peaks are reported in Table S 1. and Table S 2.

1,4-Diphenyl-1 <i>H</i> -1,2,3-triazole			
Sample	Concentration [M]	Absorbance at 1032 cm ⁻¹	Absorbance at 1494 cm ⁻¹
1	3.16·10 ⁻²	0.459	0.549
2	1.58·10 ⁻²	0.243	0.289
3	1.05·10 ⁻²	0.174	0.205
4	7.89·10 ⁻³	0.135	0.159
5	6.31·10 ⁻³	0.086	0.103
6	1.26·10 ⁻³	0.018	0.022

Table S 1. 1,4-Diphenyl-1H-1,2,3-triazole samples concentrations and absorbances of characteristic peaks.

Table S 2. Phenyl azide s	amples concentrations and	I measured absorbances of	of charad	cteristic peak

Phenyl Azide			
Sample	Concentration [M]	Absorbance at 2081 cm ⁻¹	
1	1.57·10 ⁻²	0.340	
2	7.86·10 ⁻³	0.167	
3	3.93·10⁻³	0.096	
4	1.97·10 ⁻³	0.062	

Molar extinction coefficients were then calculated using Beer-Lambert law by plotting maxima of absorptions vs samples concentration multiplied by IR cell path length and were determined as slope of fitted linear functions.

Figure S 1. IR absorption calibration curve for 1,4-diphenyl-1H-1,2,3-triazole at 1032 and 1494 cm⁻¹.

1,4-Diphenyl-1*H*-1,2,3-triazole: $\varepsilon_{1032^{cm-1}}^{DCM} = 298.5 \pm 6.8 \left[\frac{1}{M \cdot cm}\right]$

Phenyl Azide: $\varepsilon_{2081^{cm-1}}^{DCM} = 435.4 \pm 14.1 \left[\frac{1}{M \cdot cm}\right]$

3. Trials employing metallic copper powder as CuAAC reaction catalyst:

Prior to CuAAC reaction catalysed by copper-on-charcoal, metallic copper powders were tested for their possible application as heterogeneous catalysts under continuous flow conditions. Two commercial copper powders were used:

- Cu powder, semispherical, -50+70 mesh (210-297 μm particles size), 99% purity, from AlfaAesar, catalogue number 45030.22, lot number M27D044
- Cu powder, spheroidal, 14-25 μm particles size, 98% purity, from MilliporeSigma, catalogue number 326453, lot number MKCG7684

Test reactions were performed in the following flow system:

Figure S 3. Flow system used for screening of metallic copper powders in CuAAC reaction.

Procedure D: Tests of metallic copper as CuAAC reaction catalysts:

First flow stream containing 0.050 M solution of phenyl azide (1.0 eq.) in DCM and second flow stream containing a 0.055 M solution of phenylacetylene (1.1 eq.) in DCM were directed via the 3-way connector to the catalytic column (OmniFit 500 x 5mm or 1000 x 5mm) heated with hot air. IR

measurement flow cell was placed after the BPR (250 psi). Various flow rates and reactor temperatures were used.

Calibrated IR monitoring was used for *in situ* reaction monitoring and absorbances of reaction components at their specific absorption bands were plotted over time. Initial experiments were performed with 0.50 mL·min⁻¹ flow rate for each pump, resulting in 30 seconds residence time, and reactor temperature of 50 °C. First experiment in which catalytic column was left empty was performed to determine if thermal alkyne-azide cycloaddition was taking place was performed, and as judged form IR monitoring (Figure S 4. Reaction components specific bands absorptions in the experiment with empty catalytic column.) , no product was formed. Note that slight increase of absorbance at 1494 cm⁻¹ band is caused by close proximity of other absorbing bands.

Figure S 4. Reaction components specific bands absorptions in the experiment with empty catalytic column.

In next experiments, catalytic column was filled with the copper powders and the same reaction conditions were applied as before. Unfortunately, neither experiment delivered desired 1,2,3-triazole, as judged from IR monitoring (Figure S 5., Figure S 6.)

Figure S 5. Reaction components specific bands absorptions in the experiment with 210-297 μ m copper powder.

Figure S 6. Reaction components specific bands absorptions in the experiment with 14-25 μ m copper powder.

Experiments in which temperature (up to 150 °C) and reaction residence time (up to 5 minutes) were increased were performed using the 210-297 μ m size copper powder. Additionally, reagents concentrations were increased to 0.10 M and 0.11 M of phenyl azide and phenylacetylene, respectively. No significant amount product was observed in any of these experiments, as judged by *in situ* IR spectroscopy (Figure S 7.).

Figure S 7. Reaction components specific bands absorptions in the experiments with 210-297 µm copper powder using various catalytic column temperatures and residence times.

Moreover, experiments with addition of 1.0 equivalent of amine (such as triethylamine, diethylamine and DABCO) were performed at 75 °C and 60 seconds residence time, but no product was formed under these conditions.

It is well known, that CuAAC reaction is catalysed by Cu(I) species, it was then envisioned that metallic copper may need to be activated prior to the cycloaddition reaction, thus two different activation techniques were used, namely activation with elemental iodine to form copper(I) iodide and activation with hydrogen peroxide to form copper oxides species on the surface of the metallic copper.

Procedure E: Activation of metallic copper surface with iodine:

lodine (0.7 g) was added to a stirring mixture of metallic copper (210-297 μ m particles size, 0.4 g) in DCM (25.0 mL) and the mixture was loosely capped and stirred at rt for one hour. Then the mixture was filtrated, washed thoroughly with acetone, dried on air and used without further purification.

Procedure F: Activation of metallic copper surface with hydrogen peroxide:

The round-bottom flask containing metallic copper (210-297 μ m particles size, 0.4 g) was evacuated and filled with nitrogen three times, then 30% hydrogen peroxide (50.0 mL) was transferred via cannula to the flask with copper powder. The resulting mixture was stirred at rt for one hour, then it was filtrated, washed thoroughly with water and acetone, dried on air, and used without further purification.

Figure S 8. Visual comparison of obtained activated copper powders with commercial samples of CuI and Cu₂O. Left: Comparison of iodine activated copper powder with commercially available copper iodide. Right: Comparison of hydrogen peroxide activated copper powder with commercially available copper(I) oxide.

Figure S 9. Comparison of hydrogen peroxide activated copper (bottom) with untreated metallic copper (top).

Obtained treated copper powders were then placed inside the catalytic column and used in a click reaction using previous flow system. As judged from *in situ* IR monitoring (Figure S 10.), only negligible amounts of 1,4-diphenyl-1*H*-1,2,3-triazole were obtained, as the absorbance of both characteristic triazole bands at 1032 and 1494 cm⁻¹ increased slightly during both experiments and were just distinguishable from the baseline.

Figure S 10. Reaction components specific bands absorptions in the experiments with 210-297 μm treated copper powder.
Top: Reaction components IR absorbances in experiment using iodine treated copper powder.
Bottom: Reaction components IR absorbances in experiment using H₂O₂ treated copper powder.

Apart from chemical activation with iodine and hydrogen peroxide, thermal activation of copper powders under air atmosphere was performed in order to obtain mixed copper oxides or copper nanoparticles on surface of used metallic copper, and are described below:

- Copper powder (210-297 μm) was gently heated with a heat gun (approx. 165 °C) until the it changed colour to burgundy, suggesting formation of copper(I) oxides on the surface of the metallic copper.
- Copper powder (210-297 μm) was heated to 250 °C overnight to allow for high oxidation levels of copper.
- Copper powder (14-25 μm) was gently heated with a heat gun (approx. 165 °C) until it changed colour to burgundy/dark red, suggesting formation of copper(I) oxides on the surface of the metallic copper.
- Copper powder (14-25 $\mu m)$ was heated to 250 °C overnight to allow for high oxidation levels of copper.

All described thermal activations resulted in change of colours of the metallic copper, but when obtained materials were applied as catalysts in the previously used flow system, none delivered desired 1,2,3-triazole, as judged form the IR monitoring. Additional reaction with 10-fold increased concentration, i.e. 1.0 M phenyl azide and 1.1 M phenylacetylene, using copper powder (14-25 μ m) heated to 250 °C overnight as catalyst, catalytic column temperature of 100 °C and 60 seconds residence time delivered only traces of product (corresponding to 2.6% yield, Figure S 11.), as judged from the IR absorbance.

Figure S 11. IR monitoring of reaction with copper powder (14-25 μ m) heated to 250 °C overnight, 10-fold increase in reagents concentration, 100 °C catalytic column temperature, and 60 seconds residence time. Note that absorbance fluctuations of phenyl azide band at 2080 cm⁻¹ are caused by the saturation of the spectrometer due to high azide concentration.

4. Procedures, Purification and Characterization Data of 1H-1,2,3-Triazoles:

1,4-Diphenyl-1H-1,2,3-triazole (3a): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, $R_f = 0.15$ in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 220.8 mg (99.8% yield). Mp: 184.0 - 185.0 °C, lit. 183 – 184 °C ²²; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.20 (s, 1H), 7.92 (m, 2H), 7.80 (m, 2H), 7.56 (m, 2H), 7.50 – 7.44 (m, 3H), 7.38 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 148.6, 137.3, 130.4, 130.0, 129.1, 128.9, 128.6, 126.0, 120.7, 117.7. ²²

1-Phenyl-4-(4-*tert***-butylphenyl)-1***H***-1,2,3-triazole (3b):** Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, $R_f = 0.20$ in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 257.4 mg (92.8% yield). **Mp:** 143.0 - 143.6 °C; ¹H **NMR (400 MHz, CDCl₃) \delta (ppm) = 8.17 (s, 1H), 7.85 (m, 2H), 7.80 (m, 2H), 7.55 (m, 2H), 7.49 (m, 2H), 7.45 (m, 1H), 1.37 (s, 9H).** ¹³C **NMR (101 MHz, CDCl₃) \delta (ppm) = 151.7, 145.6, 137.3, 129.9, 128.8, 127.6, 126.0, 125.8, 120.7, 117.4, 34.9, 31.4.²³**

1-(Naphthalen-1-yl)-4-phenyl-1H-1,2,3-triazole (3c): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, R_f = 0.18 in 10% AcOEt in *n*-hexane) and was initially isolated as a colourless oil, which after 96 hours at -20 °C changed to white solid, 266.2 mg (98.1% yield). **Mp:** 91.1 - 92.0 °C, lit. 89 - 91 °C²⁴; ¹**H NMR (400 MHz, CDCl₃) δ (ppm) =** 8.16 (s, 1H), 8.05 (dt, J=8.0, 1.3 Hz, 1H), 8.00 – 7.95 (m, 3H), 7.71 (m, 1H), 7.68 – 7.55 (m, 4H), 7.49 (m, 2H), 7.39 (m, 1H). ¹³**C NMR (101 MHz, CDCl₃) δ (ppm) =** 147.9, 134.4, 133.9, 130.6, 130.4, 129.1, 128.8, 128.6, 128.5, 128.1, 127.3, 126.1, 125.2, 123.7, 122.6, 122.4.²⁴

2-(1-Phenyl-1*H***-1,2,3-triazol-4-yl)ethan-1-ol (3d):** Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 8:2 to 2:8, $R_f = 0.00$ in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 167.1 mg (88.3% yield). **Mp:** 41.0 - 41.5 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.85 (t, J= 0.8 Hz, 1H), 7.73 (m, 2H), 7.52 (m, 2H), 7.43 (m, 1H), 4.03 (q, J=5.8 Hz, 2H), 3.05 (td, J=5.7 Hz, J=0.7 Hz, 2H), 2.48 (t, J=6.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, neutral pH) δ (ppm) = 146.4, 137.3, 129.9, 128.8, 120.7, 120.0, 61.8, 31.1, 28.9.²⁵

4-(1-Phenyl-1*H***-1,2,3-triazol-4-yl)butan-1-ol (3e):** Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, R_f = 0.15 in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 188.1 mg (86.6% yield). **Mp:** 36.0 - 36.5 °C; ¹**H NMR (400 MHz, CDCl₃) δ** (**ppm)** = 7.74 (br s, 1H), 7.71 (m, 2H), 7.51 (m, 2H), 7.42 (m, 1H), 3.71 (t, J=6.4 Hz, 2H), 2.85 (td, J=7.6, 0.7 Hz, 2H), 1.95 (m, 2H), 1.68 (m, 2H), 1.54 (br s, 1H). ¹³C **NMR (101 MHz, CDCl₃, neutral pH) δ (ppm)** = 148.9, 137.4, 129.8, 128.6, 120.6, 119.1, 62.7, 32.3, 25.7, 25.5.¹²

(1-Phenyl-1*H*-1,2,3-triazol-4-yl)methyl benzoate (3f): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, R_f = 0.11 in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 276.4 mg (99.0% yield). Mp: 116.5 - 118.0 °C, lit. 110 – 111 °C ²⁶; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.14 (s, 1H), 8.07 (m, 2H), 7.74 (m, 2H), 7.59 – 7.49 (m, 3H), 5.56 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 166.7, 143.8, 137.1, 133.4, 129.9, 129.9, 129.8, 129.1, 128.6, 122.4, 120.8, 58.2.²⁶

4-Octyl-1-phenyl-1H-1,2,3-triazole (3g): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, R_f = 0.23 in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 257.0 mg (99.9% yield). **Mp:** 49.0 - 49.7 °C; ¹**H NMR (400 MHz, CDCl₃) δ (ppm)** = 7.73 (m, 1H), 7.71 (m, 2H), 7.51 (m, 2H), 7.41 (m, 1H), 2.80 (td, J=7.8, 0.4 Hz, 2H), 1.74 (m, 2H), 1.46 – 1.24 (m, 10H), 0.88 (t, J=7.0 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃) δ (ppm)** = 149.3, 137.4, 129.8, 128.6, 120.6, 119.0, 32.0, 29.6, 29.5, 29.4, 29.4, 25.8, 22.8, 14.2.²⁷

4-(((*tert***-Butyldimethylsilyl)oxy)methyl)-1-phenyl-1***H***-1,2,3-triazole (3h): Prepared following the procedure B and purified by column chromatography (SiO₂;** *n***-hexane:AcOEt 1:0 to 9:1, R_f = 0.29 in 10% AcOEt in** *n***-hexane) and was isolated as a white solid, 257.8 mg (89.1% yield). Mp:** 56.0 - 56.5 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.90 (t, J=0.8 Hz, 1H), 7.74 (m, 2H), 7.52 (m, 2H), 7.43 (m, 1H), 4.94 (d, J=0.8 Hz, 2H), 0.94 (s, 9H), 0.14 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 148.6, 137.3, 130.4, 130.0, 129.1, 128.9, 128.6, 126.0, 120.7, 117.7. FT-ATR-IR IR v (cm⁻¹) = 3135, 2954, 2930, 2896, 2884, 2857, 1605, 1553, 1506, 1467, 1387, 1347, 1251, 1231, 1210, 1178, 1062, 1038, 1015, 1004, 973, 939, 908, 841, 773, 755, 708, 686, 676, 666, 644, 574. UV-Vis (DCM) λ_{max} (ε): 249 nm (11813 M⁻¹ cm⁻¹). LR-ESI-MS m/z: 290.3098 (M + H⁺); HR-ESI-MS m/z: 290.1689 (M + H⁺), 312.1508 (M + Na⁺); calcd for C₁₅H₂₄N₃OSi: 290.1683, for C₁₅H₂₃N₃OsiNa: 312.1503.

C₁₅H₁₃N₃ MW: 235.29 CAS 108717-96-0

1-Benzyl-4-phenyl-1*H***-1,2,3-triazole (3i):** Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, $R_f = 0.23$ in 20% AcOEt in *n*-hexane, $R_f = 0.57$ in 40% AcOEt in *n*-hexane, $R_f = 0.79$ in 60% AcOEt in *n*-hexane) and was isolated as a white solid, 221.0 mg (93.9% yield). **Mp:** 126.4-127.3 °C, lit. 128 - 130 °C ²⁸; ¹**H NMR (400 MHz, CDCl₃) \delta (ppm) = 8.80 (m, 2H), 7.66 (s, 1H), 7.42 - 7.34 (m, 5H), 7.34 - 7.29 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) \delta (ppm) = 148.4, 134.9, 130.7, 129.3, 129.0, 128.3, 128.2, 125.9, 119.6, 54.4.²⁸**

1-Cyclohexyl-4-phenyl-1H-1,2,3-triazole (3j): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, $R_f = 0.23$ in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 181.7 mg (79.9% yield). **Mp:** 112.7 – 113.3 °C, lit. 110 - 111 °C ²⁹; ¹**H NMR (400 MHz, CDCl₃) δ (ppm) =** 7.83 (m, 2H), 7.76 (s, 1H), 7.41 (m, 2H), 7.32 (m, 1H), 4.49 (tt, J=11.8, 3.9 Hz, 1H), 2.26 (ddtd, J=12.8, 4.0, 2.6, 1.6 Hz, 2H), 1.94 (dt, J=13.8, 3.5 Hz, 2H), 1.85 – 1.74 (m, 3H), 1.48 (qt, J=13.3, 3.4 Hz, 2H), 1.30 (qt, J=12.9, 3.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 147.4, 131.0, 128.9, 128.1, 125.8, 117.4, 60.3, 33.8, 25.3, 25.3.²⁹

1-Butyl-4-phenyl-1H-1,2,3-triazole (3k): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 8:2 to 4:6, R_f = 0.04 in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 197.1 mg (97.9% yield). **Mp:** 50.2 – 50.9 °C, lit. 47 - 48 °C ³⁰; ¹H **NMR (400 MHz, CDCl₃) \delta (ppm) =** 7.83 (m, 2H), 7.74 (s, 1H), 7.42 (m, 2H), 7.33 (m, 1H), 4.40 (t, J=7.2 Hz, 2H), 1.94 (tt, J=7.6 Hz, J=7.5 Hz, 2H), 1.40 (m, 2H), 0.98 (t, J=7.4 Hz, 3H). ¹³C **NMR (101 MHz, CDCl₃) \delta (ppm) =** 147.9, 130.9, 129.0, 128.2, 125.8, 119.5, 50.3, 32.5, 19.9, 13.6.³⁰

C₁₆H₂₉N₃ MW: 263.43 CAS 2590217-97-1

1-Cyclohexyl-4-octyl-1H-1,2,3-triazole (3I): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, R_f = 0.08 in 10% AcOEt in *n*-hexane, TLC stained with phosphomolybdic acid) and was isolated as a white solid, 257.2 mg (97.6% yield). **Mp:** 61.0 – 62.1 °C; ¹H **NMR (400 MHz, CDCl₃) δ (ppm)** = 7.25 (t, J=0.7 Hz, 1H), 4.41 (tt, J=11.8, 3.9 Hz, 1H), 2.69 (td, J_t=7.8, 0.7 Hz, 2H), 2.19 (m, 2H), 1.91 (m, 2H), 1.80 – 1.61 (m, 5H), 1.45 (qt, J=13.3, 3.4 Hz, 2H), 1.39 – 1.20 (m, 11H), 0.88 (t, J=6.9 Hz, 3H). ¹³C **NMR (101 MHz, CDCl₃) δ (ppm)** = 148.2 (C), 118.2 (CH), 60.0 (CH), 33.8 (CH₂), 32.0 (CH₂), 29.7 (CH₂), 29.5 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 26.0 (CH₂), 25.4 (CH₂), 25.4 (CH₂), 22.8 (CH₂), 14.3 (CH₃). **UV-Vis (DCM) λ**_{max} (ε): no absorption peaks at >250 nm. **FT-ATR-IR IR** v (cm⁻¹) = 3117, 3063, 2922, 2852, 1557, 1467, 1446, 1375, 1336, 1281, 1214, 1201, 1156, 1055, 1030, 996, 894, 866, 848, 820, 768, 721, 661. **LR-ESI-MS m/z**: 264.3875 (M + H⁺); **HR-ESI-MS m/z**: 264.2439 (M + H⁺), 286.2254 (M + Na⁺); calcd for C₁₆H₃₀N₃ 264.2434, for C₁₆H₂₉N₃Na 286.2254.

C₁₄H₁₇N₃O₂ MW: 259.31 CAS 1430799-22-6

(1-Butyl-1*H*-1,2,3-triazol-4-yl)methyl benzoate (3m): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 8:2 to 5:5, $R_f = 0.54$ in AcOEt:*n*-hexane 8:2) and was isolated as a white solid, 258.0 mg (99.5% yield). Mp: 75.0 – 75.7 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.05 (m, 2H), 7.67 (s, 1H), 7.55 (m, 1H), 7.43 (m, 2H), 5.48 (s, 2H), 4.35 (t, J=7.3 Hz, 2H), 1.90 (m, 2H), 1.37 (m, 2H), 0.96 (t, J=7.4 Hz, 3H).^{31 13}C NMR (101 MHz, CDCl₃) δ (ppm) = 166.7, 143.0, 133.3, 130.0, 129.9, 128.5, 123.9, 58.3, 50.3, 32.4, 19.9, 13.6.

1-(2-Methoxyphenyl)-4-phenyl-1H-1,2,3-triazole (3n): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 7:3, R_f = 0.20 in AcOEt:*n*-hexane 1:9) and was isolated as a white solid, 230.0 mg (91.5% yield). **Mp:** 93.2 – 93.8 °C, lit. 90 – 92 °C ³²; ¹**H NMR (400 MHz, CDCl₃) δ (ppm) =** 8.33 (s, 1H), 7.95 – 7.90 (m, 2H), 7.84 (dd, J=7.9 Hz, J=1.7 Hz, 1H), 7.49 – 7.41 (m, 3H), 7.13 (td, J=7.7 Hz, J=1.2 Hz, 1H), 7.11 (dd, J= 8.3 Hz, J=1.1 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 151.3, 147.3, 130.8, 130.3, 129.0, 128.3, 126.5, 126.0, 125.6, 121.9, 121.4, 112.5, 56.2.³²

1-(3-Methoxyphenyl)-4-phenyl-1H-1,2,3-triazole (30): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 7:3, $R_f = 0.17$ in AcOEt:*n*-hexane 1:9) and was isolated as a white solid, 223.5 mg (88.9% yield). **Mp:** 112.7 – 113.1 °C, lit. 111 - 113 °C ³³; ¹H **NMR (400 MHz, CDCl₃) \delta (ppm) =** 8.20 (s, 1H), 7.93 (m, 2H), 7.50 – 7.35 (m, 5H), 7.32 (ddd, J=8.0 Hz, J=2.5 Hz, J=0.9 Hz, 1H), 7.00 (ddd, J=8.3 Hz, J=2.5 Hz, J=0.9 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 160.7, 148.2, 138.0, 130.6, 129.9, 129.0, 128.6, 125.9, 117.8, 114.8, 112.4, 55.7.³³

1-(4-Methoxyphenyl)-4-phenyl-1H-1,2,3-triazole (3p): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 7:3, $R_f = 0.09$ in AcOEt:*n*-hexane 1:9) and was isolated as a white solid, 219.4 mg (87.3% yield). **Mp:** 167.7 – 168.3 °C, lit. 166 - 169 °C ³³; ¹**H NMR (400 MHz, CDCl₃) \delta (ppm) =** 8.11 (s, 1H), 7.91 (m, 2H), 7.68 (m, 2H), 7.46 (m, 2H), 7.36 (m, 1H), 7.04 (m, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 160.0, 148.3, 130.7, 130.4, 129.1, 128.5, 126.0, 122.4, 118.0, 115.0, 55.8.³³

1-Phenyl-4-(4-methoxyphenyl)-1*H***-1,2,3-triazole (3q):** Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 6:4, $R_f = 0.08$ in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 229.5 mg (91.3% yield). **Mp:** 152.0 – 152.7 °C, lit. 151 - 154 °C ³⁴; ¹**H NMR (400 MHz, CDCl₃) \delta (ppm) = 8.11 (s, 1H), 7.85 (m, 2H), 7.80 (m, 2H), 7.55 (m, 2H), 7.46 (m, 1H), 7.00 (m, 2H), 3.87 (s, 3H).** ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 160.3, 148.1, 130.0, 129.2, 127.6, 120.7, 117.1, 114.6, 55.5, 31.1.³⁴

N,N-Dimethyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)aniline (3r): Prepared following the procedure B, solvent was then removed from reaction mixture and obtained residue was dried *in vacuo*. Desired product was isolated as a brown solid (R_f = 0.15 in 20% AcOEt in *n*-hexane), 219.1 mg (82.9% yield). **Mp:** 168.8 -171.4 °C.³⁵ ¹**H NMR (400 MHz, CDCl₃) \delta (ppm) = 8.07 (s, 1H), 7.91 (m, 2H), 7.60 (m, 2H), 7.45 (m, 2H), 7.36 (m, 1H), 6.80 (m, 2H), 3.04 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) \delta (ppm) = 150.8, 148.1, 130.7, 1299.0, 128.4, 126.9, 126.0, 122.1, 117.9, 112.5, 40.6.³⁵**

C₁₆H₁₂N₄ MW: 260.30000 CAS 1998733-55-3

2-((4-Phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile (3s): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 3:7, $R_f = 0.05$ in 10% AcOEt in *n*-hexane, $R_f=0.33$ in 30% AcOEt in *n*-hexane) and was isolated as a white solid, 218.6 mg (84.0% yield). **Mp:** 136.4 – 137.6 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.90 (s, 1H), 7.83 (m, 2H), 7.74 (ddd, J=7.7, 1.4, 0.6 Hz, 1H), 7.62 (td, J=7.8, 1.4 Hz, 1H), 7.48 (td, J=7.7, 1.2 Hz, 1H), 7.45 – 7.39 (m, 3H), 7.34 (m, 1H), 5.81 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 148.7, 138.4, 133.9, 133.2, 130.3, 129.8, 129.5, 129.0, 128.6, 125.9, 120.1, 117.2, 112.0, 51.9.³⁶

C₁₆H₁₄CIN₃ MW: 283.75900 CAS 1641553-42-5

1-(4-Chlorobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (3t): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, R_f = 0.06 in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 228.61 mg (80.4% yield). **Mp**: 170.0 – 170.6 °C.³⁷ ¹**H NMR (400 MHz, CDCl₃) δ (ppm) =** 7.69 (m, 2H), 7.62 (s, 1H), 7.36 (m, 2H), 7.19 – 7.25 (m, 4H), 5.54 (s, 2H), 2.37 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃) δ (ppm) =** 148.6, 138.3, 135.0, 133.4, 129.7, 129.5, 127.7, 125.8, 53.6, 21.4.³⁸

4-Phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole (3u): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 3:4, R_f = 0.08 in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 254.2 mg (83.8% yield). **Mp:** 139.2 – 139.8 °C.^{39 1}**H NMR (400 MHz, CDCl₃) δ (ppm)** = 7.81 (m, 2H), 7.70 (s, 1H), 7.65 (d, J=8.1 Hz, 2H), 7.45 – 7.39 (m, 4H), 7.34 (m, 1H), 5.65 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 148.7, 138.8 (d, ⁴J_{C-F}=1.5 Hz), 131.2 (q, ²J_{C-F}=32.7 Hz), 130.4, 129.0, 128.5, 128.3, 126.3 (q, ³J_{C-F}=3.8 Hz), 125.9, 123.9 (q, ¹J_{C-F}=272.3 Hz), 119.7, 53.7. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -62.9. ¹⁹F¹H} NMR (376 MHz, CDCl₃) δ (ppm) = -62.9.³⁹

Ethyl 1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole-4-carboxylate (3v): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, R_f =0.15 in 30% AcOEt in *n*-hexane) and was isolated as a slightly beige solid, 247.8 mg (82.8% yield). **Mp:** 136.1 – 136.8 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.02 (s, 1H), 7.66 (dt, J=8.1, 0.6 Hz, 2H), 7.40 (dt, J=8.0, 0.7 Hz, 2H), 5.65 (s, 2H), 4.41 (q, J=7.1 Hz, 2H), 1.39 (t, J=7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 160.7, 141.2, 137.8, 131.6 (q, J=32.9 Hz), 128.5, 127.5, 126.5 (q, J=3.7 Hz), 123.8 (q, J=274.6 Hz), 61.6, 53.9, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -63.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ (ppm) = -63.0.¹⁹

1-Phenyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (3w): Flow stream containing 0.0250 M solution of azide (1.0 eq.) and 0.0325 M solution of alkyne (1.3 eq.) in DCM was directed with 0.75 mL·min⁻¹ to the catalytic column (stainless steel Restek 4.6 mm ID x 150 mm column filled with 860±7 mg Cu/C, total volume of 2.49 mL, effective volume of 1.61 mL, 1.01 mmol Cu per 1.0 g of Cu/C, 0.869±0.007 mmol Cu) submerged in an oil bath at 110 °C. Additional cooling coil (1m, 1.00 mm ID, SS) submersed in water (at approx. 23 °C) was placed after the reactor to cool down reaction mixture. IR measurement cell was placed after the BPR (250 psi). Flow equipment was controlled with python script. Reaction mixture was passed through Cu/C catalytic columns for 800 s resulting in elution of 10.0 mL of reaction mixture. Solvent was removed from collected reaction mixture and obtained solid residue was dried *in vacuo*. Desired product was obtained as a white solid, 69.4 mg (96.0% yield). **Mp:** 232.5 – 232.9 °C, lit. 231.0 °C.^{40 1}**H NMR (400 MHz, CDCl₃) δ (ppm) =** 8.29 (br s, 1H), 8.05 (d, J=8.1 Hz, 2H), 7.81 (m, 2H), 7.73 (d, J=8.0 Hz, 2H), 7.58 (m, 2H), 7.49 (m, 1H).^{41 13}C NMR (101 MHz, CDCl₃) δ (ppm) = not recorded due to low solubility. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -62.7. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ (ppm) = -62.7.

1-(4-Nitrophenyl)-4-phenyl-1H-1,2,3-triazole (3x): Copper-on-Charcoal (76.0 mg, 0.077 mmol Cu, 5 mol%) was added to a flask fitted with a stir bar and septum, then 1,4-dioxane (3.1 mL, 12.5 vol.) was added slowly to the sidewalls of the flask to rinse the catalyst down. While the heterogeneous solution is stirred, triethylamine (169.6 mg, 1.7 mmol, 1.1 eq.), phenylacetylene (171.1 mg, 1.7 mmol, 1.1 eq.), and 1-azido-4-nitrobenzene (250.0 mg, 1.5 mmol, 1.0 eq.) were added. Reaction mixture was then

heated to 60 °C and the reaction progress was monitored by TLC until complete consumption of azide has occurred. The mixture was then filtered through a pad of silica to remove the catalyst, and the filter cake was further washed with EtOAc to ensure complete transfer. The volatiles were removed in vacuo to give 254.3 mg (62.7% yield) of pure triazole. **Mp:** 253.0 – 254.1 °C, lit. 254 – 255 °C ⁴²; ¹**H NMR (400 MHz, DMSO-d₆) \delta (ppm) =** 9.54 (s, 1H), 8.51 (m, 2H), 8.27 (m, 2H), 7.97 (m, 2H), 7.53 (m, 2H), 7.42 (m, 1H). ¹³C NMR (101 MHz, DMSO-d₆) δ (ppm) = 120.0, 120.5, 125.4, 125.7, 128.6, 129.1, 129.8, 140.9, 146.7, 147.8.⁴²

1-Phenyl-4-(4-nitrophenyl)-1H-1,2,3-triazole (3y): Copper-on-Charcoal (70.1 mg, 0.071 mmol Cu, 5 mol%) was added to a flask fitted with a stir bar and septum, then 1,4-dioxane (3.4 mL, 20.0 vol.) was added slowly to the sidewalls of the flask to rinse the catalyst down. While the heterogeneous solution is stirred, triethylamine (157.5 mg, 1.6 mmol, 1.1 eq.), 4-nitrophenylacetylene (229.1 mg, 1.6 mmol, 1.1 eq.), and phenyl azide (168.6 mg, 1.4 mmol, 1.0 eq.) were added. Reaction mixture was then heated to 60 °C and the reaction progress was monitored by TLC until complete consumption of azide has occurred. The mixture was then filtered through a pad of silica to remove the catalyst, and the filter cake was further washed with EtOAc to ensure complete transfer. The volatiles were removed in vacuo to give 212.3 mg (56.3% yield) of pure triazole. **Mp:** 249.7 – 250.9 °C, lit. 247 – 249 °C ⁴³; ¹**H NMR (400 MHz, DMSO-d₆) \delta (ppm) = 9.58 (s, 1H), 8.40 (m, 2H), 8.23 (m, 2H), 7.97 (m, 2H), 7.76 (m, 1H), 7.66 (m, 2H), 7.56 (m, 1H). ¹³C NMR (101 MHz, DMSO-d₆) \delta (ppm) = 146.9, 145.4, 136.7, 133.0, 130.0, 1429.1, 126.1, 124.5, 121.8, 120.2.⁴⁴**

1-(2,6-Difluorobenzyl)-1H-1,2,3-triazolyl-4-carboxylic acid ethyl ester (3z): Prepared following the procedure B and purified by column chromatography (SiO₂; AcOEt:*n*-hexane 1:9, R_f = 0.09 in AcOEt:*n*hexane 1:9) and was isolated as a white solid, 237.1 mg (88.7% yield). Mp: 114.6 – 114.9 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.08 (s, 1H), 7.40 (dd, ³J_{H-H}=8.5, ⁴J_{H-F}=6.5 Hz, 1H), 6.99 (m, 2H), 5.68 (t, ⁴J_{H-} _F=5.7 Hz, 2H), 4.40 (q, ³J_{H-H}=7.1 Hz, 2H), 1.38 (t, ³J_{H-H}=7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 161.5 (dd, ¹J_{C-F}=251.7, ³J_{C-F}=6.8 Hz, C), 160.8 (s, C), 140.7 (s, C), 132.0 (t, ³J_{C-F}=10.4 Hz, CH), 127.5 (t, J_{C-F}=10.4 Hz, CH), 127.5 (t, J_C-F=10.4 Hz, CH), 127.5 (t, J_C-F=10 F=1.7 Hz, CH), 112.1 (dd, ²J_{C-F}=19.2, ⁴J_{C-F}=5.7 Hz, CH), 110.2 (t, ²J_{C-F}=18.9 Hz, C), 61.5 (s, CH₂), 41.8 (t, ³J_{C-F}=18.9 Hz, C), 61.5 (s, CH₂), 61.5 (t, ³J_{C-F}=18.9 Hz, C), 61.5 (t _F=4.1 Hz, CH₂), 14.4 (s, CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -114.0 (t, J=6.9 Hz). ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ (ppm) = -114.1. ¹H NMR (400 MHz, DMSO-d₆) δ (ppm) = 8.83 (br s, 1H), 7.52 (tt, ³J_{H-H}=8.5, ⁴J_{H-F}=6.7 Hz, 1H), 7.19 (m, 2H), 5.74 (t, ⁴J_{H-F}=1.15 Hz, 2H), 4.30 (q, ³J_{H-H}=7.1 Hz. 2H), 1.29 (t, ³J_{H-} _H=7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ (ppm) = 160.8 (dd, ¹J_{C-F}=249.5, ³J_{C-F}=7.3 Hz, C), 160.1 (s, C), 138.7 (s, C), 131.9 (t, ³J_{C-F}=10.5 Hz, CH), 129.4 (s, CH), 112.0 (dd, ²J_{C-F}=18.9, ⁴J_{C-F}=5.8 Hz, CH), 110.8 (t, ²J_{C-F}=19.0 Hz, C), 60.6 (s, CH₂), 41.3 (t, ³J_{C-F}=3.8 Hz, CH₂), 14.1 (s, CH₃).⁴⁵ ¹⁹F NMR (376 MHz, DMSOd₆) δ (ppm) = -114.6 (t, J=7.1 Hz). ¹⁹F{¹H} NMR (376 MHz, DMSO-d₆) δ (ppm) = -114.6. UV-Vis (DCM) **λ**_{max}(ε): 262 nm (867 M⁻¹ cm⁻¹). FT-ATR-IR IR v (cm⁻¹) = 3144, 3089, 3019, 2985, 2942, 2902, 1722, 1626, 1592, 1522, 1468, 1445, 1378, 1350, 1209, 1198, 1157, 1137, 1104, 1045, 1013, 991, 893, 862, 793, 779, 764, 669, 678, 543. LR-ESI-MS m/z: 268.2016 (M + H⁺); 557.3250 (2M + Na⁺) HR-ESI-MS m/z: 222.0476 (M - EtO), 290.0716 (M + Na⁺), 557.1527 (2M + Na⁺); calcd for $C_{10}H_6F_2N_3O$ 222.0479, for $C_{12}H_{11}F_2N_3O_2$ 267.0819, for $C_{12}H_{11}F_2N_3NaO_2$ 290.0717, for $C_{24}H_{22}F_4N_6NaO_4$ 557.1536.

C₁₈H₁₉N₅O₄ MW: 369.38100 CAS 127728-29-4

3'-Deoxy-3'-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-((2*R*,4*S*,5*S*)-5-(hydroxymethyl)-4-(4-phenyl-1*H*-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1*H*,3*H*)-dione (3aa):

Flow stream containing 0.10 M solution of azide (1.0 eq.) and 0.13 M solution of alkyne (1.3 eq.) in EtOH was directed with 0.75 mL·min⁻¹ to the catalytic columns (stainless steel Restek 4.6 mm ID x 150 mm column filled with 860±7 mg Cu/C, total volume of 2.49 mL, effective volume of 1.61 mL, 1.01 mmol Cu per 1.0 g of Cu/C, 0.869±0.007 mmol Cu) submerged in an oil bath at 110 °C. Additional cooling coil (1m, 1.00 mm ID, SS) submersed in water (at approx. 23 °C) was placed after the reactor to cool down reaction mixture. IR measurement cell was placed after the BPR (250 psi). Flow equipment was controlled with python script. Reaction mixture was passed through Cu/C catalytic columns for 800 s resulting in elution of 10.0 mL of reaction mixture. Reaction mixture was collected, solvent was then removed and obtained solid residue was preadsorbed onto silica and purified by column chromatography (SiO₂; n-hexane:AcOEt:MeOH 7:3:0 to 3:5:2 v/v, R_f=0.11 in 70% AcOEt in nhexane, R_f=0.43 in *n*-hexane:AcOEt:MeOH 3:6:1) and was isolated as a white solid, 286.7 mg (77.6% yield). Mp: 236.0 – 236.4 °C, lit. 232.0 – 234.0 °C.⁴⁶ ¹H NMR (400 MHz, DMSO-d₆) δ (ppm) = 11.36 (br s, 1H), 8.78 (s, 1H), 7.87 (m, 1H), 7.84 (m, 2H), 7.47 (m, 2H), 7.35 (m, 1H), 6.45 (t, J=6.6 Hz, 1H), 5.41 (dt, J=8.6, 5.4 Hz, 1H), 5.30 (t, J=5.0 Hz, 1H), 4.29 (dt, J=5.5, 3.6 Hz, 1H), 3.74 (dt, J=11.3, 3.7 Hz, 1H), 3.67 (dt, J=12.0, 4.0 Hzf, 1H), 2.81 (ddd, J= 13.9, 6.7, 5.4 Hz, 1H), 2.70 (ddd, J=14.0, 8.7, 6.5 Hz, 1H), 1.82 (d, J=1.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ (ppm) = 163.7 (C), 150.4 (C), 146.6 (C), 136.3 (CH), 130.6 (C), 128.9 (CH), 128.0 (CH), 125.2 (CH), 121.0 (CH), 109.3 (C), 84.4 (CH), 83.9 (CH), 60.8 (CH₂), 59.4 (CH), 37.1 (CH₂), 12.3 (CH₃).⁴⁷ LR-ESI-MS m/z: 370.4 (M + H⁺), 392.4 (M + Na⁺), 739.7 (2M + H⁺), 761.7 (2M + Na⁺), 783.4 (2M + 2Na⁺).

1,3-Bis(1-phenyl-1*H*-1,2,3-triazol-4-yl)propane (3ab):

Increased reaction time: Flow stream containing 0.10 M solution of azide (1.0 eq.) and 0.07 M solution of alkyne (0.7 eq.) in DCM was directed with 0.40 mL·min⁻¹ to the catalytic columns (stainless steel Restek 4.6 mm ID x 150 mm column filled with 860±7 mg Cu/C, total volume of 2.49 mL, effective volume of 1.61 mL, 1.01 mmol Cu per 1.0 g of Cu/C, 0.869±0.007 mmol Cu) submerged in an oil bath at 110 °C. Additional cooling coil (1m, 1.00 mm ID, SS) submersed in water (at approx. 23 °C) was placed after the reactor to cool down reaction mixture. IR measurement cell was placed after the BPR (250 psi). Flow equipment was controlled with python script. Reaction mixture was passed through Cu/C catalytic columns for 1500 s resulting in elution of 10.0 mL of reaction mixture. Solvent was removed from collected reaction mixture and obtained residue was purified by column chromatography (SiO₂; AcOEt:*n*-hexane 1:9 to 9:1, R_f=0.20 in AcOEt:*n*-hexyne 4:6) and was isolated as a white solid, 70.2 mg (42.5% yield).

Increased temperature and residence time: Flow stream containing 0.10 M solution of azide (1.0 eq.) and 0.07 M solution of alkyne (0.7 eq.) in DCM was directed with 0.50 mL·min⁻¹ to the catalytic columns (stainless steel Restek 4.6 mm ID x 150 mm column filled with 860±7 mg Cu/C, total volume of 2.49 mL, effective volume of 1.61 mL, 1.01 mmol Cu per 1.0 g of Cu/C, 0.869±0.007 mmol Cu) submerged in an oil bath at 120 °C. Additional cooling coil (1m, 1.00 mm ID, SS) submersed in water (at approx. 23 °C) was placed after the reactor to cool down reaction mixture. IR measurement cell was placed after the BPR (250 psi). Flow equipment was controlled with python script. Reaction mixture was passed through Cu/C catalytic columns for 1200 s resulting in elution of 10.0 mL of reaction mixture. Solvent was removed from collected reaction mixture and obtained residue was purified by column chromatography (SiO₂; AcOEt:*n*-hexane 1:9 to 9:1, R_f=0.20 in AcOEt:*n*-hexyne 4:6) and was isolated as a white solid, 90.5 mg (54.8% yield).

Mp: 138.0 – 139.1 °C; ¹**H NMR (400 MHz, CDCl₃) δ (ppm)** = 7.79 (s, 2H), 7.72 (m, 4H), 7.51 (m, 4H), 7.42 (m, 2H), 2.93 (t, J=7.4 Hz, 4H), 2.22 (q, J=7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 148.4 (C), 137.4 (C), 129.8 (CH), 128.6 (CH), 120.6 (CH), 119.4 (CH), 29.1 (CH₂), 25.1 (CH₂).⁴⁸

1-Phenyl-1*H***-1,2,3-triazolyl-4-carboxylic acid ethyl ester (3ac):** Prepared following the procedure B and purified by column chromatography (SiO₂; AcOEt:*n*-hexane 1:9 to 2:8, $R_f = 0.05$ in AcOEt:*n*-hexane 1:9) and was isolated as a white solid, 194.2 mg (89.4% yield). **Mp:** 86.0 – 86.7 °C ⁴⁹; ¹**H NMR (400 MHz, CDCl₃) \delta (ppm) = 8.50 (s, 1H), 7.76 (m, 2H), 7.57 (m, 2H), 7.50 (m, 1H), 4.48 (q, J=7.1 Hz, 2H), 1.45 (t, J=7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) \delta (ppm) = 160.8, 141.1, 136.6, 130.1, 129.7, 125.6, 121.0, 61.7, 14.5.⁵⁰**

1-(3β)-Cholest-5-en-3-yl-4-phenyl-1*H*-1,2,3-triazole, 1-((3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-

cyclopenta[*a*]**phenanthren-3-yl**)-**4-phenyl-1***H*-**1,2,3-triazole (3ad):** Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1, R_f=0.36 in 10% AcOEt in *n*-hexane) and was isolated as a white, cloudy solid, 277.7 mg (54.0% yield). **Mp:** 233.9 – 234.5 °C, lit. 200.0 °C.⁵¹ ¹**H NMR (400 MHz, CDCl₃) δ (ppm) =** 7.83 (m, 2H), 7.78 (s, 1H), 7.42 (m, 2H), 7.32 (m, 1H), 5.48 (dt, J=5.5, 2.0 Hz, 1H), 4.43 (m, 1H), 2.82 (m, 1H), 2.60 (ddd, J=13.5, 4.4, 2.0 Hz, 1H), 2.20 – 2.09 (m, 2H), 2.09 – 2.00 (m, 3H), 1.85 (m, 1H), 1.57 – 1.43 (m, 5H), 1.38 – 0.99 (m, 18H), 0.93 (d, J=6.5 Hz, 3H), 0.87 (dd, J=6.6, 1.8 Hz, 6H), 0.7 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 147.5 (C), 139.4 (C), 131.0 (C), 129.0 (CH), 128.1 (CH), 125.8 (CH), 123.5 (CH), 117.5 (CH), 61.1 (CH), 56.84 (CH), 56.3 (CH), 50.2 (CH), 42.5 (C), 39.9 (CH₂), 39.8 (CH₂), 39.7 (CH₂), 38.0 (CH₂), 36.9 (C), 36.3 (CH₂), 35.9 (CH), 32.0

(CH₂), 32.0 (CH), 29.5 (CH₂), 28.4 (CH₂), 28.2 (CH), 24.4 (CH₂), 24.0 (CH₂), 23.0 (CH₃), 22.7 (CH₃), 21.2 (CH₂), 19.6 (CH₃), 18.9 (CH₃), 12.0 (CH₃). ⁵¹ **LR-ESI-MS m/z:** 514.6 (M + H⁺).

1-Phenyl-1*H***-1**,**2**,**3-triazole (3ae):** Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 9:1 to 5:5, $R_f = 0.10$ in 10% AcOEt in *n*-hexane) and was isolated as a white solid, 143.2 mg (98.6% yield). Mp: 53.4 – 54. 1 °C, lit. 53 – 54 °C ⁵²; ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.00 (d, J=1.1 Hz, 1H), 7.85 (d, J=1.1 Hz, 1H), 7.75 (m, 2H), 7.54 (m, 2H), 7.45 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 137.2, 134.6, 129.9, 128.9, 121.8, 120.8.

1-(2,6-Difluorobenzyl)-1H-1,2,3-triazole (3af): Prepared following the procedure B and purified by column chromatography (SiO₂; *n*-hexane:AcOEt 8:2 to 5:5, R_f = 0.54 in AcOEt:*n*-hexane 8:2) and was isolated as a creme solid, 188.0 mg (96.3% yield). **Mp:** 75.0 – 75.4 °C; ¹**H NMR (400 MHz, CDCl₃) δ (ppm)** = 7.69 (d, J=1.1 Hz, 1H), 7.60 (d, J=0.9 Hz, 1H), 7.36 (tt, ${}^{3}J_{H-H}$ =8.4 Hz, ${}^{4}J_{H-F}$ =6.5 Hz, 1H), 6.97 (m, 2H), 5.66 (t, ${}^{4}J_{H-F}$ =1.3 Hz, 2H). 13 **C NMR (101 MHz, CDCl₃) δ (ppm)** = 161.6 (dd, ${}^{1}J_{C-F}$ =251.3 Hz, ${}^{3}J_{C-F}$ =6.9 Hz), 134.2 (s), 131.6 (t, ${}^{2}J_{C-F}$ =10.3 Hz), 123.5 (s), 112.0 (m), 111.1 (t, ${}^{2}J_{C-F}$ =19.0 Hz), 41.3 (t, ${}^{3}J_{C-F}$ =4.0 Hz). 19 F{¹H} **NMR (376 MHz, CDCl₃) δ (ppm)** =-114.3.

4-Methyl-1-phenyl-1*H***-1,2,3-triazole (3ag):** Prepared following the procedure B and purified by column chromatography (SiO₂; AcOEt:*n*-hexane 1:9 to 4:6, R_f = 0.17 in AcOEt:*n*-hexane 2:8) and was isolated as a white solid, 131.0 mg (82.3% yield). **Mp:** 81.1 – 81.8 °C, lit. 80 – 81 °C ⁵⁴; ¹**H NMR (400 MHz, CDCl₃) δ (ppm) =** 7.74 – 7.68 (m, 3H), 7.51 (m, 2H), 7.41 (m, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) = 144.2, 137.4, 129.8, 128.6, 120.6, 119.5, 11.0.⁵⁵

1-Benzyl-4-methyl-1*H***-1,2,3-triazole (3ah):** Prepared following the procedure B and purified by column chromatography (SiO₂; AcOEt:*n*-hexane 1:9 to 6:4, R_f=0.24 in AcOEt:*n*-hexane 4:6) and was isolated as a white solid, 176.9 mg (82.2% yield). **Mp:** 64.0 – 64.7 °C, lit. 64 – 65 °C ⁵⁶; ¹**H NMR (400 MHz, CDCl₃) \delta (ppm)** = 7.36 – 7.27 (m, 3H), 7.25 – 7.18 (m, 2H), 7.15 (q, J=0.8 Hz, 1H), 5.44 (t, J=0.6 Hz, 2H), 2.28 (d, J=0.8 Hz, 3H). ¹³C **NMR (101 MHz, CDCl₃) \delta (ppm)** = 149.9 (C), 135.1 (C), 129.2 (CH), 128.7 (CH), 128.1 (CH), 121.2 (CH), 54.1 (CH₂), 11.0 (CH₃).⁵⁶

1-Phenyl-4-propyl-1*H***-1,2,3-triazole (3ai):** Prepared following the procedure B and purified by column chromatography (SiO₂; AcOEt:*n*-hexane 1:9 to 3:7, R_f=0.06 in AcOEt:*n*-hexane 1:9) and was isolated as a white solid, 155.4 mg (83.0% yield). **Mp:** 47.0 – 47.9 °C, lit. 47 – 48 °C ⁵⁷; ¹**H NMR (400 MHz, CDCl₃) δ (ppm) =** 7.72 (m, 3H), 7.51 (m, 2H), 7.41 (m, 1H), 2.78 (td, J=7.7 Hz, J=0.7 Hz, 2H), 1.77 (tq, J=7.7 Hz, J=7.4 Hz, 2H), 1.02 (t, J=7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) **δ (ppm) =** 149.1, 137.5, 129.8, 128.6, 120.6, 119.0, 27.8, 22.8, 14.0.⁵⁷

1-Phenyl-4-(trimethylsilyl)-1H-1,2,3-triazole (3aj): Prepared following the procedure B and purified by column chromatography (SiO₂; AcOEt:*n*-hexane 1:9 to 3:7, R_f = 0.41 in AcOEt:*n*-hexane 4:6) and was isolated as a white solid, 20.0 mg (9.2% yield). **Mp:** 89.7 – 90.4 °C, lit. 89 – 90 °C ⁵⁸; ¹**H NMR (400 MHz, CDCl₃) δ (ppm) =** 7.94 (s, 1H), 7.74 (m, 2H), 7.51 (m, 2H), 7.42 (m, 1H), 0.38 (s, 9H). ¹³**C NMR (101 MHz, CDCl₃) δ (ppm) =** 147.5, 137.3, 129.8, 128.6, 127.3, 121.0, -1.0.⁵⁹

Rufinamide, 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide (4): Flow stream containing 0.10 M solution of azide (1.0 eq.) and 0.13 M solution of alkyne (1.3 eq.) in DMSO was directed with 0.75 mL·min⁻¹ to the catalytic columns (stainless steel Restek 4.6 mm ID x 150 mm column filled with 860±7 mg Cu/C, total volume of 2.49 mL, effective volume of 1.61 mL, 1.01 mmol Cu per 1.0 g of Cu/C, 0.869±0.007 mmol Cu) submerged in an oil bath at 110 °C. Additional cooling coil (1m, 1.00 mm ID, SS) submersed in water (at approx. 23 °C) was placed after the reactor to cool down reaction mixture. IR measurement cell was placed after the BPR (250 psi). Flow equipment was controlled with python script. Reaction mixture was passed through Cu/C catalytic columns for 800 s resulting in elution of 10.0 mL of reaction mixture. Solvent was removed from collected reaction mixture and obtained solid residue was washed with water, collected, and dried in vacuo. Rufinamide was obtained as a beige solid, 227.6 mg (95.6% yield). Mp: 241.1 – 242.6 °C, lit. 241 – 243 °C ⁶⁰; ¹H NMR (400 MHz, DMSO-d₆) **δ (ppm) =** 8.54 (s, 1H), 7.83 (br s, 1H), 7.52 (tt, ³J_{H-H}=8.5 Hz, ⁴J_{H-F}=6.7 Hz, 1H), 7.46 (br s, 1H), 7.19 (m, 2H), 5.72 (s, 2H). ¹⁹F NMR (376 MHz, DMSO-d₆) δ (ppm) = -114.3 (t, J=7.1 Hz). ¹⁹F{¹H} NMR (376 MHz, **DMSO-d₆**) δ (ppm) = -114.3. ¹³C NMR (101 MHz, DMSO-d₆) δ (ppm) = 161.3 (s), 160.8 (td, ¹J_{C-F}=249.4 Hz, ³J_{C-F}=7.4 Hz), 142.8 (s), 131.8 (t, ³J_{C-F}=10.5 Hz), 126.8 (s), 112.0 (dd, ²J_{C-F}=18.9 Hz, ⁴J_{C-F}=5.8 Hz), 111.0 (t, ²J_{C-F}=19.2 Hz), 41.2 (t, ³J_{C-F}=4.0 Hz).⁸

1-(2,6,-Difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid: A mixture of ethyl 1-(2,6-difluorobenzyl)-1H-1,2,3-triazolyl-4-carboxylate (111.6 mg, 0.42 mmol, 1.0 eq.) and lithium hydroxide monohydrate (52.6 mg, 1.25 mmol, 3.0 eq.) in THF:H2O 1:1 (1.0:1.0 mL, 17.0 vol.) was stirred at 50 °C for 24h. THF was then distilled off, pH of the mixture was adjusted to 1 and white solid precipitated out. Solid was filtered off, washed with cold water and dried under vacuum. 1-(2,6-Difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid was obtained as 66.2 mg of white solid (66.3% yield). ¹H NMR (400 MHz, DMSO-d₆) **δ** (ppm) = 13.14 (br s, 1H), 8.73 (s, 1H), 7.52 (tt, ${}^{3}J_{H-H}=8.5$, ${}^{4}J_{H-F}=6.7$ Hz, 1H), 7.18 (m, 2H), 5.72 (s, 2H). 13 C NMR (101 MHz, DMSO-d₆) **δ** (ppm) = 161.5 (s, C), 160.8 (dd, ${}^{1}J_{C-F}=249.5$, ${}^{3}J_{C-F}=7.4$ Hz, C), 139.6 (s, C), 131.9 (t, ${}^{3}J_{C-F}=10.4$ Hz, CH), 129.2 (s, CH), 112.0 (m, CH), 110.9 (t, ${}^{2}J_{C-F}=19.1$ Hz, C), 41.2 (t, ${}^{3}J_{C-F}=3.8$ Hz, CH). 19 F NMR (376 MHz, DMSO-d₆) **δ** (ppm) = -114.6 (t, J=7.1 Hz). 19 F{¹H} NMR (376 MHz, DMSO-d₆) **δ** (ppm) = -114.6.⁶¹

5. Copies of NMR, UV-Vis, FT-ATR-IR and MS spectra of 1,2,3-triazoles:

Figure S 12. ¹ H NMR spectrum of 1,4-diphenyl-1H-1,2,3-triazole 3a	. 29
Figure S 13. ¹³ C NMR spectrum of 1,4-diphenyl-1H-1,2,3-triazole 3a	.29
Figure S 14. ¹ H NMR spectrum of 1-phenyl-4-(4-tert-butyl)phenyl-1H-1,2,3-triazole 3b	.30
Figure S 15. ¹³ C NMR spectrum of 1-phenyl-4-(4-tert-butyl)phenyl-1H-1,2,3-triazole 3b	.30
Figure S 16. ¹ H NMR spectrum of 1-naphthalenyl-4-phenyl-1H-1,2,3-triazole 3c	.31
Figure S 17. ¹³ C NMR spectrum of 1-naphthalenyl-4-phenyl-1H-1,2,3-triazole 3c	.31
Figure S 18. ¹ H NMR spectrum of 1-(1-phenyl-1H-1,2,3-triazol-4-yl)ethan-1-ol 3d	.32
Figure S 19. ¹³ C NMR spectrum of 1-(1-phenyl-1H-1,2,3-triazol-4-yl)ethan-1-ol 3d	.32
Figure S 20. ¹ H NMR spectrum of 4-(1-phenyl-1H-1,2,3-triazol-4-yl)butan-1-ol 3e	.33
Figure S 21. ¹³ C NMR spectrum of 4-(1-phenyl-1H-1,2,3-triazol-4-yl)butan-1-ol 3e	.33
Figure S 22. ¹ H NMR spectrum of (1-phenyl-1H-1,2,3-triazol-4-yl)methyl benzoate 3f	.34
Figure S 23. ¹³ C NMR spectrum of (1-phenyl-1H-1,2,3-triazol-4-yl)methyl benzoate 3f	.34
Figure S 24. ¹ H NMR spectrum of 4-octyl-1-phenyl-1H-1,2,3-triazole 3g	.35
Figure S 25. ¹³ C NMR spectrum of 4-octyl-1-phenyl-1H-1,2,3-triazole 3g	.35
Figure S 26. ¹ H NMR spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazol	le
3h	.36
Figure S 27. ¹³ C NMR spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazo	ole
3h	.36
Figure S 28.FT-ATR-IR spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triaze	ole
3h	.37
Figure S 29. UV-Vis spectrum of 6.84E-5 M 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-	
1,2,3-triazole 3h in DCM	.37
Figure S 30. UV-Vis spectra of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazole 3	h
in DCM. Concentrations of measured samples are described in the legend and are in mol·dm ⁻³ . Not	te
that the region between 200 and 230 nm is saturated due to solvent absorption.	.38
Figure S 31. Absorption vs concentration graph of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-pheny	/ -
1H-1,2,3-triazole 3h for determination of molar extinction coefficient using Beer-Lambert law	.38
Figure S 32. LR-ESI-MS spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-	
triazole 3h .	. 39
Figure S 33. HR-ESI-MS spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-	
triazole 3h .	. 39
Figure S 34. ¹ H NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazole 3i	.40
Figure S 35. ¹³ C NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazole 3i	.40
Figure S 36. ¹ H NMR spectrum of 1-cyclohexyl-4-phenyl-1H-1,2,3-triazole 3 j	.41
Figure S 37. ¹³ C NMR spectrum of 1-cyclohexyl-4-phenyl-1H-1,2,3-triazole 3 <i>j</i>	.41
Figure S 38. ¹ H NMR spectrum of 1-butyl-4-phenyl-1H-1,2,3-triazole 3k	.42
Figure S 39. ¹³ C NMR spectrum of 1-butyl-4-phenyl-1H-1,2,3-triazole 3k .	.42
Figure S 40. ¹ H NMR spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole 3 I	.43
Figure S 41. DEPT-135 NMR spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole 3 I.	.43
Figure S 42. ¹³ C NMR spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole 3 I	.44
Figure S 43. HSQC (*H-**C) NIVIK spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole 31	.44
Figure S 44. FT-ATR-IR spectrum of 1-cyclonexyl-4-octyl-1H-1,2,3-triazole 3 .	.45
Figure S 45. UV-Vis absorption spectrum of 2.52E-3 M 1-cyclohexyl-4-octyl-1H-1,2,3-triazole 3I in	4-
	.45
Figure S 46. LK-ESI-IVIS spectrum of 1-CyclonexyI-4-OctyI-1H-1,2,3-triazole 3 I.	.46
Figure S 47. HR-ESI-MS spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole 3I	.46

Figure S 48. ¹ H NMR spectrum of (1-butyl-1H-1,2,3-triazol-4-yl)methyl benzoate 3m	47
Figure S 49. ¹³ C NMR spectrum of (1-butyl-1H-1,2,3-triazol-4-yl)methyl benzoate 3m	47
Figure S 50. ¹ H NMR spectrum of 1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole 3n	48
Figure S 51. ¹³ C NMR spectrum of 1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole 3n	48
Figure S 52. ¹ H NMR spectrum of 1-(3-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole 30	49
Figure S 53. ¹³ C NMR spectrum of 1-(3-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole 30	49
Figure S 54. ¹ H NMR spectrum of 1-(4-methoxyphenyl)-4-phenyl-1H-1.2.3-triazole 3p	50
Figure S 55. ¹³ C NMR spectrum of 1-(4-methoxyphenyl)-4-phenyl-1H-1.2.3-triazole 3p	
Figure S 56. ¹ H NMR spectrum of 1-phenyl-4-(4-methoxyphenyl)-1H-1.2.3-triazole 3a	
Figure S 57. ¹³ C NMR spectrum of 1-phenyl-4-(4-methoxyphenyl)-1H-1.2.3-triazole 3g	
Figure S 58. ¹ H NMR spectrum of N.N-Dimethyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)aniline 3r.	
Figure S 59. ¹³ C NMR spectrum of N N-Dimethyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)aniline 3r .	52
Figure S 60 ¹ H NMR spectrum of 2-((4-Phenyl-1H-1 2 3-triazol-1-yl)methyl)henzonitrile 3s .	53
Figure S 61 13 C NMR spectrum of 2-((4-Phenyl-1H-1 2 3-triazol-1-yl)methyl)benzonitrile 3s .	55
Figure S 62 ¹ H NMR spectrum of $1-(A-Chlorobenzyl)-A-(n-tolyl)-1H-1 2 3-triazole 3t$	54
Figure S 63 13 C NMR spectrum of 1.(4-Chlorobenzyl)-4.(p-tolyl)-1H-1.2.3-triazole 3t	54 54
Figure S 64 ¹ H NMR spectrum of A-Phenyl-1- $(A-(trifluoromethyl))$ benzyl)-1H-1 2 3-triazole 3	
Figure 5.65 13 C NMP spectrum of 4. Depyl 1 (4 (trifluoromothyl)benzyl) 1H 1.2.2 triazole 3u .	
Figure 5.65. C NIVIR spectrum of 4 Phenyl 1 (4 (trifluoromethyl)benzyl) 11 1.2.2 triazole 3 .	
Figure 5.66. F NIVIR Spectrum of 4 Phenyl 1 (4 (triflueremethyl)benzyl) 111.1.2.3 triazole 50.	ЭО Эн БС
Figure 5.67. "F{-H} NIVIR Spectrum of 4-Phenyi-1-(4-(trifluoromethyl)benzyi)-1H-1,2,3-triazole	3U. . 50
Figure S 68. ⁻ H NIVIR spectrum of Etnyl 1-(4-(trifluorometnyl)benzyl)-1H-1,2,3-triazole-4-carbox	xylate
3V	
Figure S 69C NIVIR spectrum of Ethyl 1-(4-(triffuoromethyl)benzyl)-1H-1,2,3-triazole-4-carbo	xylate
$5V_{1}$	5/
Figure S 70F NIXIR spectrum of Ethyl 1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole-4-carbo	xylate
3V	57
rigure 5 /1. "F{'H} NIVIR Spectrum of Etnyl 1-(4-(trinuorometnyl)benzyl)-1H-1,2,3-triazole-4-	го
Carboxylate $3v_{1}$	
Figure S 72. ¹ H NIVIR spectrum of 1-Phenyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole 3w.	
Figure S 73. ¹² F NMR spectrum of 1-Phenyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole 3w.	
Figure S 74. ¹² F{ ¹ H} NMR spectrum of 1-Phenyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole	3w. 59
Figure S 75. ¹ H NMR spectrum of 1-(4-nitrophenyl)-4-phenyl-1H-1,2,3-triazole 3x .	59
Figure S 76. ¹³ C NMR spectrum of 1-(4-nitrophenyl)-4-phenyl-1H-1,2,3-triazole 3x	60
Figure S 77. ¹ H NMR spectrum of 4-(4-nitrophenyl)-1-phenyl-1H-1,2,3-triazole 3y	60
Figure S 78. ¹³ C NMR spectrum of 4-(4-nitrophenyl)-1-phenyl-1H-1,2,3-triazole 3y	61
Figure S 79. ¹ H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid eth	yl
ester 3z	61
Figure S 80. ¹³ C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid eth	ıyl
ester 3z	62
Figure S 81. DEPT-135 NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic a	acid
ethyl ester 3z	62
Figure S 82. ¹⁹ F NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid eth	iyl
ester 3z	63
Figure S 83. ¹⁹ F{ ¹ H} NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid	l ethyl
ester 3z	<i>,</i> 63
Figure S 84 HSOC (¹ H-DEPT-135) NMR spectrum of 1-(2.6-difluorobenzyl)-1H-1.2.3-triazole-4-	
carboxylic acid ethyl ester 3z .	63

Figure S 85. ¹ H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl
ester 3z 64
Figure S 86. ¹³ C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl
ester 3z 64
Figure S 87. DEPT-135 NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid
ethyl ester 3z 65
Figure S 88. ¹⁹ F NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl
ester 3z 65
Figure S 89. ¹⁹ F{ ¹ H} NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl
ester 3z 65
Figure S 90. HSQC (¹ H-DEPT-135) NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-
carboxylic acid ethyl ester 3z66
Figure S 91. FT-ATR-IR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl
ester 3z 66
Figure S 92. UV-Vis spectrum of 4.83E-4 M 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid
ethyl ester 3z in DCM67
Figure S 93. UV-Vis spectra of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester 3z
in DCM. Concentrations of measured samples are described in the legend and are in mol·dm ⁻³ 67
Figure S 94. Absorption vs concentration graph of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-
carboxylic acid ethyl ester 3z for determination of molar extinction coefficient using Beer-Lambert
law
Figure S 95. LR-ESI-MS spectrogram of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl
ester 3z
Figure S 96. HR-ESI-Ms spectrogram of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid
ethyl ester 3z 69
Figure S 97. ¹ H NMR spectrum of 3'-Deoxy-3'-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-
((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-
methylpyrimidine-2,4(1H,3H)-dione 3aa. 69
Figure S 98. ¹³ C NMR spectrum of 3'-Deoxy-3'-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-
((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-
methylpyrimidine-2,4(1H,3H)-dione 3aa. 70
Figure S 99. DEPT-135 NMR spectrum of 3'-Deoxy-3'-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-
((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-
methylpyrimidine-2,4(1H,3H)-dione 3aa.
Figure S 100. HSQC (¹ H- ¹³ C) NMR spectrum of 3'-Deoxy-3'-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine,
1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-
methylpyrimidine-2,4(1H,3H)-dione 3aa.
Figure S 101. HMBC (¹ H- ¹³ C) NMR spectrum of 3'-Deoxy-3'-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine,
1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-
methylpyrimidine-2.4(1H.3H)-dione 3aa.
Figure S 102. LR-ESI-MS of 3'-Deoxy-3'-(4-phenyl-1H-1.2.3-triazol-1-yl)thymidine. 1-((2R.4S.5S)-5-
(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-vl)tetrahvdrofuran-2-vl)-5-methylpvrimidine-
2.4(1H.3H)-dione 3aa.
Figure S 103. ¹ H NMR spectrum of 1.3-bis(1-phenyl-1H-1.2.3-triazol-4-vl)propane 3ab
Figure S 104. DEPT-135 NMR spectrum of 1.3-bis(1-phenvl-1H-1.2.3-triazol-4-vl)propane 3ab 73
Figure S 105. ¹³ C NMR spectrum of 1.3-bis(1-phenyl-1H-1.2.3-triazol-4-yl)propane 3ab 74
Figure S 106. ¹ H NMR spectrum of 1-phenyl1H-1,2 3-triazolvl-4-carboxylic acid ethyl ester 3ac 74
Figure S 107, ¹³ C NMR spectrum of 1-phenyl1H-1 2,3-triazolyl-4-carboxylic acid ethyl ester 3ac 75.

Figure S 108. ¹ H NMR spectrum of 1-(3 β)-Cholest-5-en-3-yl-4-phenyl-1H-1,2,3-triazole, 1-	
((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-	
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)-4-phenyl-	-
1H-1,2,3-triazole 3ad.	.75
Figure S 109. ¹³ C NMR spectrum of 1-(3β)-Cholest-5-en-3-yl-4-phenyl-1H-1,2,3-triazole, 1-	
((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-	
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)-4-phenyl-	-
1H-1,2,3-triazole 3ad.	.76
Figure S 110. DEPT-135 NMR spectrum of 1-(3β)-Cholest-5-en-3-yl-4-phenyl-1H-1,2,3-triazole, 1-	
((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-	
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)-4-phenyl-	-
1H-1,2,3-triazole 3ad.	.76
Figure S 111. LR-ESI-MS spectrogram of 1-(3β)-Cholest-5-en-3-yl-4-phenyl-1H-1,2,3-triazole, 1-	
((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-	
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)-4-phenyl-	-
1H-1,2,3-triazole 3ad.	.77
Figure S 112. ¹ H NMR spectrum of 1-phenyl-1H-1,2,3-triazole 3ae	.77
Figure S 113. ¹³ C NMR spectrum of 1-phenyl-1H-1,2,3-triazole 3ae	.77
Figure S 114. ¹ H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole 3af	.78
Figure S 115. ¹³ C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole 3af	.78
Figure S 116. ¹⁹ F{ ¹ H} NMR spectrum of 1-(2,6-difluorophenyl)-1H-1,2,3-triazole 3af	.79
Figure S 117. ¹ H NMR spectrum of 4-methyl-1-phenyl-1H-1,2,3-triazole 3af	.79
Figure S 118. NMR spectrum of 4-methyl-1-phenyl-1H-1,2,3-triazole 3ag	.79
Figure S 119. ¹ H NMR spectrum of 1-benzyl-4-methyl-1H-1,2,3-triazole 3ah	.80
Figure S 120. ¹³ C NMR spectrum of 1-benzyl-4-methyl-1H-1,2,3-triazole 3ah	.80
Figure S 121. ¹ H NMR spectrum of 1-phenyl-4-propyl-1H-1,2,3-triazole 3ai	.81
Figure S 122. ¹³ C NMR spectrum of 1-phenyl-4-propyl-1H-1,2,3-triazole 3ai	.81
Figure S 123. ¹ H NMR spectrum of I 1-phenyl-4-(trimethylsilyl)-1H-1,2,3-triazole 3aj	.82
Figure S 124. ¹³ C NMR spectrum of 1-phenyl-4-(trimethylsilyl)-1H-1,2,3-triazole 3aj	.82
Figure S 125. ¹ H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide	
(rufinamide) 4	.83
Figure S 126. ¹³ C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide	
(rufinamide) 4	.83
Figure S 127. ¹⁹ F NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide	
(rufinamide) 4	.84
Figure S 128. ¹⁹ F{ ¹ H} NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide	
(rufinamide) 4	.84
Figure S 129. ¹ H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid	.84
Figure S 130. ¹³ C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid	.85
Figure S 131. DEPT-135 NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid	d.
	.85
Figure S 132. ¹⁹ F NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid	.86
Figure S 133. ¹⁹ F{ ¹ H} NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid	.86

Figure S 12. ¹H NMR spectrum of 1,4-diphenyl-1H-1,2,3-triazole **3a**.

Figure S 13. ¹³C NMR spectrum of 1,4-diphenyl-1H-1,2,3-triazole **3a**.

Figure S 14. ¹H NMR spectrum of 1-phenyl-4-(4-tert-butyl)phenyl-1H-1,2,3-triazole **3b**.

Figure S 15. ¹³C NMR spectrum of 1-phenyl-4-(4-tert-butyl)phenyl-1H-1,2,3-triazole **3b**.

Figure S 16. ¹H NMR spectrum of 1-naphthalenyl-4-phenyl-1H-1,2,3-triazole **3c**.

Figure S 17. ¹³C NMR spectrum of 1-naphthalenyl-4-phenyl-1H-1,2,3-triazole **3c**.

Figure S 18. ¹H NMR spectrum of 1-(1-phenyl-1H-1,2,3-triazol-4-yl)ethan-1-ol **3d**.

Figure S 19. ¹³C NMR spectrum of 1-(1-phenyl-1H-1,2,3-triazol-4-yl)ethan-1-ol **3d**.

Figure S 20. ¹H NMR spectrum of 4-(1-phenyl-1H-1,2,3-triazol-4-yl)butan-1-ol **3e**.

Figure S 21. ¹³C NMR spectrum of 4-(1-phenyl-1H-1,2,3-triazol-4-yl)butan-1-ol **3e**.

Figure S 22. ¹H NMR spectrum of (1-phenyl-1H-1,2,3-triazol-4-yl)methyl benzoate **3f**.

Figure S 23. ¹³C NMR spectrum of (1-phenyl-1H-1,2,3-triazol-4-yl)methyl benzoate **3f**.

Figure S 24. ¹H NMR spectrum of 4-octyl-1-phenyl-1H-1,2,3-triazole **3g**.

Figure S 25. ¹³C NMR spectrum of 4-octyl-1-phenyl-1H-1,2,3-triazole **3g**.

Figure S 26. ¹H NMR spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazole **3h**.

Figure S 27. ¹³C NMR spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazole **3h**.

Figure S 28.FT-ATR-IR spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazole **3h**.

Figure S 29. UV-Vis spectrum of 6.84E-5 M 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazole **3h** in DCM.

Figure S 30. UV-Vis spectra of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazole **3h** in DCM. Concentrations of measured samples are described in the legend and are in mol·dm⁻³. Note that the region between 200 and 230 nm is saturated due to solvent absorption.

Figure S 31. Absorption vs concentration graph of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazole **3h** for determination of molar extinction coefficient using Beer-Lambert law.

Figure S 32. LR-ESI-MS spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazole **3h**.

Figure S 33. HR-ESI-MS spectrum of 4-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenyl-1H-1,2,3-triazole **3h**.

Figure S 34. ¹H NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazole **3i**.

Figure S 35. ¹³C NMR spectrum of 1-benzyl-4-phenyl-1H-1,2,3-triazole **3i**.

Figure S 36. ¹H NMR spectrum of 1-cyclohexyl-4-phenyl-1H-1,2,3-triazole **3***j*.

Figure S 37. ¹³C NMR spectrum of 1-cyclohexyl-4-phenyl-1H-1,2,3-triazole **3**j.

Figure S 38. ¹H NMR spectrum of 1-butyl-4-phenyl-1H-1,2,3-triazole **3k**.

Figure S 39. ¹³C NMR spectrum of 1-butyl-4-phenyl-1H-1,2,3-triazole **3k**.

Figure S 40. ¹H NMR spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole **3I**.

Figure S 41. DEPT-135 NMR spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole 3I.

Figure S 42. ¹³C NMR spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole **3**I.

Figure S 43. HSQC (¹H-¹³C) NMR spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole **3**I.

Figure S 45. UV-Vis absorption spectrum of 2.52E-3 M 1-cyclohexyl-4-octyl-1H-1,2,3-triazole **3I** in DCM.

Figure S 46. LR-ESI-MS spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole **3I**.

Figure S 47. HR-ESI-MS spectrum of 1-cyclohexyl-4-octyl-1H-1,2,3-triazole **3I**.

Figure S 48. ¹H NMR spectrum of (1-butyl-1H-1,2,3-triazol-4-yl)methyl benzoate **3m**.

Figure S 49. ¹³C NMR spectrum of (1-butyl-1H-1,2,3-triazol-4-yl)methyl benzoate **3m**.

Figure S 50. ¹H NMR spectrum of 1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole **3n**.

Figure S 51. ¹³C NMR spectrum of 1-(2-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole **3n**.

Figure S 52. ¹H NMR spectrum of 1-(3-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole **30**.

Figure S 53. ¹³C NMR spectrum of 1-(3-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole **30**.

Figure S 54. ¹H NMR spectrum of 1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole **3p**

Figure S 55. ¹³C NMR spectrum of 1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole **3p**.

Figure S 56. ¹H NMR spectrum of 1-phenyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole **3q**.

Figure S 57. ¹³C NMR spectrum of 1-phenyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole **3q**.

Figure S 58. ¹H NMR spectrum of N,N-Dimethyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)aniline **3r**.

Figure S 59. ¹³C NMR spectrum of N,N-Dimethyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)aniline **3r.**

Figure S 60. ¹H NMR spectrum of 2-((4-Phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile **3s.**

Figure S 61. ¹³C NMR spectrum of 2-((4-Phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile **3s.**

Figure S 62. ¹H NMR spectrum of 1-(4-Chlorobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole **3t**.

Figure S 63. ¹³C NMR spectrum of 1-(4-Chlorobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole **3t**.

Figure S 64. ¹H NMR spectrum of 4-Phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole **3u**.

Figure S 65. ¹³C NMR spectrum of 4-Phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole **3u**.

Figure S 66. ¹⁹F NMR spectrum of 4-Phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole **3u**.

Figure S 67. ¹⁹F{¹H} NMR spectrum of 4-Phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole **3u**.

Figure S 68. ¹H NMR spectrum of Ethyl 1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole-4-carboxylate **3v**.

Figure S 69. ¹³C NMR spectrum of Ethyl 1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole-4-carboxylate **3v.**

Figure S 70. ¹⁹F NMR spectrum of Ethyl 1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole-4-carboxylate **3v.**

Figure S 71. ${}^{19}F{}^{1}H$ NMR spectrum of Ethyl 1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole-4-carboxylate **3v**.

Figure S 72. ¹H NMR spectrum of 1-Phenyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole **3w.**

Figure S 73. ¹⁹F NMR spectrum of 1-Phenyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole **3w.**

Figure S 74. ¹⁹F^{{1}H} NMR spectrum of 1-Phenyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole **3w.**

Figure S 75. ¹*H NMR spectrum of* 1-(4-*nitrophenyl*)-4-*phenyl*-1*H*-1,2,3-*triazole* **3***x*.

Figure S 76. ¹³C NMR spectrum of 1-(4-nitrophenyl)-4-phenyl-1H-1,2,3-triazole **3x**.

Figure S 77. ¹H NMR spectrum of 4-(4-nitrophenyl)-1-phenyl-1H-1,2,3-triazole **3y**.

Figure S 78. ¹³C NMR spectrum of 4-(4-nitrophenyl)-1-phenyl-1H-1,2,3-triazole **3y**.

Figure S 79. ¹H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z**.

Figure S 80. ¹³C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester 3z.

Figure S 81. DEPT-135 NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester 3z.

Figure S 83. ¹⁹F{¹H} NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z**.

Figure S 84. HSQC (¹H-DEPT-135) NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z**.

Figure S 85. ¹H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z**.

Figure S 86. ¹³C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z**.

Figure S 87. DEPT-135 NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester 3z.

Figure S 88. ¹⁹F NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z**.

Figure S 89. ¹⁹F{¹H} NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z**.

Figure S 90. HSQC (¹H-DEPT-135) NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z**.

Figure S 91. FT-ATR-IR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester 3z.

Figure S 92. UV-Vis spectrum of 4.83E-4 M 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z** in DCM.

Figure S 93. UV-Vis spectra of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z** in DCM. Concentrations of measured samples are described in the legend and are in mol·dm⁻³.

Figure S 94. Absorption vs concentration graph of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester **3z** for determination of molar extinction coefficient using Beer-Lambert law.

Figure S 95. LR-ESI-MS spectrogram of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester 3z.

Figure S 96. HR-ESI-Ms spectrogram of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid ethyl ester 3z.

Figure S 97. ¹H NMR spectrum of 3 '-Deoxy-3 '-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione **3aa**.

Figure S 98. ¹³C NMR spectrum of 3 '-Deoxy-3 '-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione **3aa.**

Figure S 99. DEPT-135 NMR spectrum of 3 '-Deoxy-3 '-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione **3aa**.

Figure S 100. HSQC (¹H-¹³C) NMR spectrum of 3 '-Deoxy-3 '-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione **3aa**.

Figure S 101. HMBC (¹H-¹³C) NMR spectrum of 3 '-Deoxy-3 '-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione **3aa**.

Figure S 102. LR-ESI-MS of 3 '-Deoxy-3 '-(4-phenyl-1H-1,2,3-triazol-1-yl)thymidine, 1-((2R,4S,5S)-5-(hydroxymethyl)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione **3aa**.

Figure S 103. ¹H NMR spectrum of 1,3-bis(1-phenyl-1H-1,2,3-triazol-4-yl)propane **3ab**.

Figure S 104. DEPT-135 NMR spectrum of 1,3-bis(1-phenyl-1H-1,2,3-triazol-4-yl)propane **3ab**.

Figure S 105. ¹³C NMR spectrum of 1,3-bis(1-phenyl-1H-1,2,3-triazol-4-yl)propane **3ab**.

Figure S 106. ¹H NMR spectrum of 1-phenyl--1H-1,2,3-triazolyl-4-carboxylic acid ethyl ester **3ac**.

Figure S 107. ¹³C NMR spectrum of 1-phenyl--1H-1,2,3-triazolyl-4-carboxylic acid ethyl ester **3ac**.

Figure S 108. ¹H NMR spectrum of 1-(36)-Cholest-5-en-3-yl-4-phenyl-1H-1,2,3-triazole, 1-((35,85,95,10R,13R,145,17R)-10,13dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)-4-phenyl-1H-1,2,3-triazole **3ad.**

Figure S 109. ¹³C NMR spectrum of 1-(38)-Cholest-5-en-3-yl-4-phenyl-1H-1,2,3-triazole, 1-((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl)-4-phenyl-1H-1,2,3-triazole **3ad.**

Figure S 110. DEPT-135 NMR spectrum of 1-(38)-Cholest-5-en-3-yl-4-phenyl-1H-1,2,3-triazole, 1-((35,85,95,10R,13R,145,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)-4-phenyl-1H-1,2,3-triazole **3ad**.

Figure S 111. LR-ESI-MS spectrogram of 1-(38)-Cholest-5-en-3-yl-4-phenyl-1H-1,2,3-triazole, 1-((35,85,95,10R,13R,145,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl)-4-phenyl-1H-1,2,3-triazole **3ad**.

Figure S 112. ¹H NMR spectrum of 1-phenyl-1H-1,2,3-triazole **3ae**.

Figure S 113. ¹³C NMR spectrum of 1-phenyl-1H-1,2,3-triazole **3ae**.

Figure S 114. ¹H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole **3af**.

Figure S 115. ¹³C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole **3af**.

Figure S 116. ¹⁹F{¹H} NMR spectrum of 1-(2,6-difluorophenyl)-1H-1,2,3-triazole **3af**.

Figure S 117. ¹H NMR spectrum of 4-methyl-1-phenyl-1H-1,2,3-triazole **3af**.

Figure S 118. NMR spectrum of 4-methyl-1-phenyl-1H-1,2,3-triazole **3ag**.

Figure S 119. ¹H NMR spectrum of 1-benzyl-4-methyl-1H-1,2,3-triazole **3ah**.

Figure S 120. ¹³C NMR spectrum of 1-benzyl-4-methyl-1H-1,2,3-triazole **3ah**.

Figure S 121. ¹H NMR spectrum of 1-phenyl-4-propyl-1H-1,2,3-triazole **3ai**.

Figure S 122.¹³C NMR spectrum of 1-phenyl-4-propyl-1H-1,2,3-triazole **3ai**.

Figure S 123. ¹H NMR spectrum of I 1-phenyl-4-(trimethylsilyl)-1H-1,2,3-triazole **3aj**.

Figure S 124. ¹³C NMR spectrum of 1-phenyl-4-(trimethylsilyl)-1H-1,2,3-triazole **3aj**.

Figure S 125. ¹H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide (rufinamide) **4**.

Figure S 126. ¹³C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide (rufinamide) **4**.

Figure S 127.¹⁹F NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide (rufinamide) 4.

Figure S 128. ¹⁹F{¹H} NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxamide (rufinamide) 4.

Figure S 129. ¹H NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid.

Figure S 130. ¹³C NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid.

Figure S 131. DEPT-135 NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid.

Figure S 132. ¹⁹F NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid.

Figure S 133. ¹⁹F{¹H} NMR spectrum of 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylic acid.

6. References

- 1 M.-A. Armour, *Hazardous Laboratory Chemicals Disposal Guide*, CRC Press, 1996.
- 2 M. T. Berry, D. Castrejon and J. E. Hein, *Org. Lett.*, 2014, **16**, 3676–3679.
- S. Bai, S. Li, J. Xu, X. Peng, K. Sai, W. Chu, Z. Tu, C. Zeng and R. H. Mach, *J. Med. Chem.*, 2014, 57, 4239–4251.
- 4 L. Ren and N. Jiao, *Chem. Commun.*, 2014, **50**, 3706–3709.
- 5 M. Li, K. Dong, Y. Zheng and W. Song, Org. Biomol. Chem., 2019, **17**, 9933–9941.
- 6 C. Qin, T. Shen, C. Tang and N. Jiao, *Angew. Chemie Int. Ed.*, 2012, **51**, 6971–6975.
- 7 P. Couvreur, J. Nicolas, T. Blin, A. Chtourou and N. Genevaz, in US Patent, US 2017/0079928A1, 2014.
- 8 D. Yadav, N. Singh, T. W. Kim, J. Y. Kim, N. J. Park and J. O. Baeg, *Green Chem.*, 2019, **21**, 2677–2685.
- 9 C. Z. Tao, X. Cui, J. Li, A. X. Liu, L. Liu and Q. X. Guo, *Tetrahedron Lett.*, 2007, 48, 3525–3529.
- 10 K. Takagi, H. Fukuda, S. Shuto, A. Otaka and M. Arisawa, *Adv. Synth. Catal.*, 2015, **357**, 2119–2124.
- 11 J.-H. H. Li, X.-D. D. Zhang and Y.-X. X. Xie, *Synthesis* (*Stuttg*)., 2005, **2005**, 804–808.
- 12 J. Andersen, S. Bolvig and X. Liang, *Synlett*, 2005, **2005**, 2941–2947.
- 13 R. Karmakar, S. Y. Yun, J. Chen, Y. Xia and D. Lee, *Angew. Chemie Int. Ed.*, 2015, **54**, 6582–6586.
- 14 R. Zeng, L. Chen and Q. Yan, *Angew. Chemie Int. Ed.*, 2020, **59**, 18418–18422.
- 15 M. W. Amolins, L. B. Peterson and B. S. J. Blagg, *Bioorganic Med. Chem.*, 2009, **17**, 360–367.
- 16 A. Schulz, M. Thomas and A. Villinger, *Dalt. Trans.*, 2019, **48**, 125–132.
- 17 W. A. Carroll, A. Perez-Medrano, A. S. Florjancic, D. W. Nelson, S. Peddi, T. Li, E. M. Bunnelle, G. C. Hirst and B. Li, *WO2005111003A1*, , DOI:WO2005111003A1.
- 18 D. Hédou, E. Deau, C. Dubouilh-Benard, M. Sanselme, A. Martinet, E. Chosson, V. Levacher and T. Besson, *European J. Org. Chem.*, 2013, 7533–7545.
- 19 J. J. Yang, W. W. Yu, L. L. Hu, W. J. Liu, X. H. Lin, W. Wang, Q. Zhang, P. L. Wang, S. W. Tang, X. Wang, M. Liu, W. Lu and H. K. Zhang, *J. Med. Chem.*, 2020, **63**, 569–590.
- 20 Y. Wu, K. Chen, X. Ge, P. Ma, Z. Xu, H. Lu and G. Li, Org. Lett., 2020, 22, 6143–6149.
- 21 B. H. Lipshutz and B. R. Taft, Angew. Chemie Int. Ed., 2006, 45, 8235–8238.
- M. A. Topchiy, A. A. Ageshina, P. S. Gribanov, S. M. Masoud, T. R. Akmalov, S. E. Nefedov, S. N. Osipov, M. S. Nechaev and A. F. Asachenko, *European J. Org. Chem.*, 2019, 2019, 1016–1020.
- R. S. Chauhan, D. Oza, S. Yadav, C. Dash, A. M. Z. Slawin and N. Shivran, *New J. Chem.*, 2019, 43, 2381–2388.
- 24 Y. Zhao, H. Van Nguyen, L. Male, P. Craven, B. R. Buckley and J. S. Fossey, *Organometallics*, 2018, **37**, 4224–4241.

- 25 E. Loukopoulos, A. Abdul-Sada, G. Csire, C. Kállay, A. Brookfield, G. J. Tizzard, S. J. Coles, I. N. Lykakis and G. E. Kostakis, *Dalt. Trans.*, 2018, **47**, 10491–10508.
- 26 H. Ben El Ayouchia, H. ElMouli, L. Bahsis, H. Anane, R. Laamari, C. J. Gómez-García, M. Julve and S. E. Stiriba, *J. Organomet. Chem.*, 2019, **898**, 120881.
- 27 J. Yan and L. Wang, *Synthesis (Stuttg).*, 2009, **2010**, 447–452.
- 28 A. A. Ali, M. Chetia, B. Saikia, P. J. Saikia and D. Sarma, *Tetrahedron Lett.*, 2015, **56**, 5892–5895.
- 29 C. Shao, R. Zhu, S. Luo, Q. Zhang, X. Wang and Y. Hu, *Tetrahedron Lett.*, 2011, **52**, 3782–3785.
- 30 S. Guo, Y. Zhou, B. Dai, C. Huo, C. Liu and Y. Zhao, *Synth.*, 2018, **50**, 2191–2199.
- 31 X. Xiong and L. Cai, *Catal. Sci. Technol.*, 2013, **3**, 1301–1307.
- 32 Z. Jin, P. Xue and E. Fu, *Synth. Commun.*, 2014, **44**, 68–75.
- 33 J. Q. Shang, H. Fu, Y. Li, T. Yang, C. Gao and Y. M. Li, *Tetrahedron*, 2019, **75**, 253–259.
- 34 H. Xu and Z. Sun, *Adv. Synth. Catal.*, 2016, **358**, 1736–1740.
- P. Kautny, D. Bader, B. Stöger, G. A. Reider, J. Fröhlich and D. Lumpi, *Chem. A Eur. J.*, 2016, 22, 18887–18898.
- 36 P. Li, Y. Liu, L. Wang, J. Xiao and M. Tao, Adv. Synth. Catal., 2018, 360, 1673–1684.
- 37 V. B. Purohit, S. C. Karad, K. H. Patel and D. K. Raval, *RSC Adv.*, 2014, **4**, 46002–46007.
- 38 P. V. Chavan, K. S. Pandit, U. V. Desai, M. A. Kulkarni and P. P. Wadgaonkar, *RSC Adv.*, 2014, **4**, 42137–42146.
- Z. G. Wu, X. J. Liao, L. Yuan, Y. Wang, Y. X. Zheng, J. L. Zuo and Y. Pan, *Chem. A Eur. J.*, 2020, 26, 5694–5700.
- 40 B. E. Velasco, G. López-Téllez, N. González-Rivas, I. García-Orozco and E. Cuevas-Yañez, *Can. J. Chem.*, 2013, **91**, 292–299.
- 41 M. González-Lainez, M. Gallegos, J. Munarriz, R. Azpiroz, V. Passarelli, M. V. Jiménez and J. J. Pérez-Torrente, *Organometallics*, 2022, **41**, 2154–2169.
- 42 M. M. Khakzad Siuki, M. Bakavoli and H. Eshghi, *Appl. Organomet. Chem.*, 2019, **33**, e4774.
- 43 S. Ito, A. Kakehi, K. Okada, S. Goto and H. Kawaguchi, *Heterocycles*, 1997, **45**, 889–896.
- 44 H. W. Bai, Z. J. Cai, S. Y. Wang and S. J. Ji, *Org. Lett.*, 2015, **17**, 2898–2901.
- 45 J. P. Williams, D. Slee, M. Moorjani and N. J. Ashweek, in *International Patent, WO2016123533A1*, 2016.
- 46 P. Wigerinck, A. Van Aerschot, P. Claes, J. Balzarini, E. De Clercq and P. Herdewijn, *J. Heterocycl. Chem.*, 1989, **26**, 1635–1642.
- 47 L. Garlatti, R. Huet and K. Alvarez, *Tetrahedron*, 2021, **92**, 132252.
- 48 K. Farrell, H. Müller-Bunz and M. Albrecht, *Dalt. Trans.*, 2016, **45**, 15859–15871.
- 49 K. Dabak, Ö. Sezer, A. Akar and O. Anaç, *Eur. J. Med. Chem.*, 2003, **38**, 215–218.
- 50 M. K. Barman, A. K. Sinha and S. Nembenna, *Green Chem.*, 2016, **18**, 2534–2541.

- 51 A. M. Deobald, L. R. S. Camargo, D. Alves, J. Zukerman-Schpector, A. G. Corrêa and M. W. Paixão, *Synthesis (Stuttg).*, 2011, **2011**, 4003–4010.
- 52 S. J. M. Patterson, P. R. Clark, G. D. Williams and N. C. O. Tomkinson, *Tetrahedron Lett.*, 2020, **61**, 152483.
- 53 Z. Zhang and C. Kuang, *Chinese J. Chem.*, 2013, **31**, 1011–1014.
- 54 M. E. Munk and Y. K. Kim, J. Am. Chem. Soc., 1964, **86**, 2213–2217.
- J. Soellner, I. Císařová and T. Strassner, *Organometallics*, 2018, **37**, 4619–4629.
- 56 F. Cuevas, A. I. Oliva and M. A. Pericàs, *Synlett*, 2010, **2010**, 1873–1877.
- 57 B. Kaboudin, Y. Abedi and T. Yokomatsu, *Org. Biomol. Chem.*, 2012, **10**, 4543–4548.
- 58 T. Sakamoto, D. Uchiyama, Y. Kondo and H. Yamanaka, *Heterocycles*, 1993, **35**, 1273–1278.
- 59 P. Eisenberger, B. P. Bestvater, E. C. Keske and C. M. Crudden, *Angew. Chemie Int. Ed.*, 2015, **54**, 2467–2471.
- 60 O. Jennah, R. Beniazza, C. Lozach, D. Jardel, F. Molton, C. Duboc, T. Buffeteau, A. El Kadib, D. Lastécouères, M. Lahcini and J. M. Vincent, *Adv. Synth. Catal.*, 2018, **360**, 4615–4624.
- 61 W. H. Mudd and E. P. Stevens, *Tetrahedron Lett.*, 2010, **51**, 3229–3231.