Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Low Au-content CoAu electrodes for environmental applications

Kristina Radinović¹, Jadranka Milikić¹, Aldona Balčiūnaitė², Zita Sukackienė², Marko Bošković,³ Loreta Tamašauskaitė-Tamašiūnaitė² and Biljana Šljukić^{1,4*}

¹University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia

 ²Center for Physical Sciences and Technology, Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
³ University of Belgrade, Institute of Chemistry, Technology, and Metallurgy, Department of Microelectronic Technologies, Njegoševa 12, 11000 Belgrade, Serbia
⁴Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049–001 Lisbon, Portugal

* Corresponding author: <u>biljka@ffh.bg.ac.rs</u>

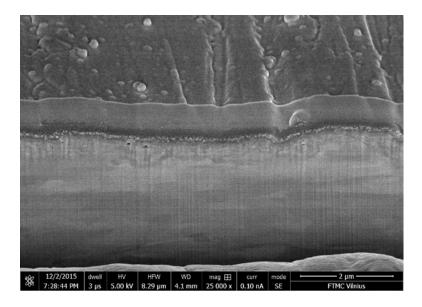
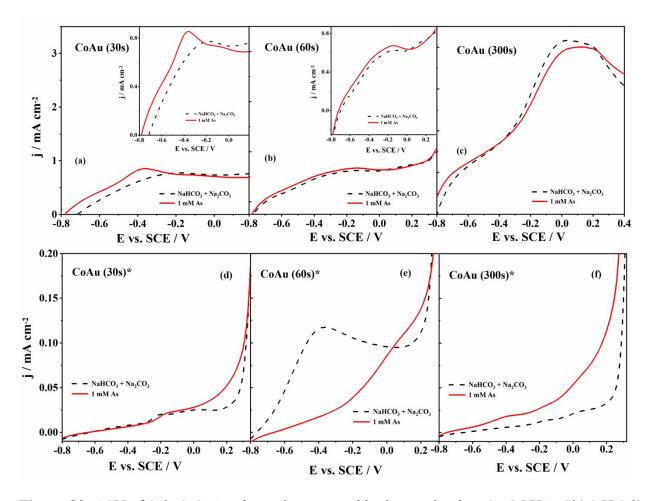



Figure S1. TEM image of the cross section of Co deposited onto Cu.

Figure S2. ASV of (a,b,c) CoAu electrodes prepared by immersion into 1 mM HAuCl4 (pH 1.8) at 30° C for different periods (30 s, 60 s and 300 s) and (d,e,f) CoAu electrodes prepared by immersion into 1 g 1^{-1} KAu(CN)₂ + 0.4 M (NH₄)₂C₆H₆O₇ complex (pH = 5) for various periods (30 s, 60 s and 300 s). ASVs recorded in NaHCO₃ + Na₂CO₃ buffer in the absence and in the presence of As (III) (1 mM) recorded at a scan rate of 50 mV s⁻¹ after holding the potential at - 0.7 V for 60 s.