Supporting information

Synthesis of W-modified CeO₂/ZrO₂ catalysts for selective catalytic reduction of

NO with NH₃

Chenglong Li^a, Zhitao Han^{a*}, Yuqing Hu^a, Tingjun Liu^a, Xinxiang Pan^{a b}

a. Marine Engineering College, Dalian Maritime University, Dalian 116026, China;

b. School of Electronic and Information Technology, Guangdong Ocean University, Zhanjiang

524088, China

Correspondence information: Dr. Zhitao Han, Dalian Maritime University, No.1, Linghai Road,

Dalian 116026, China, hanzt@dlmu.edu.cn.

Table of content

Table. S1 Comparison of the performance over $Ce_{0.4}/W_{0.1}ZrO_x$ catalyst with related literatures.

Fig. S1. SCR performance test results of fresh $Ce_{0.4}/W_{0.1}ZrO_x$ and used $Ce_{0.4}/W_{0.1}ZrO_x$

(2nd cycle) catalyst: (a) NO_x conversion and (b) N_2 selectivity.

Fig. S2. XRD patterns of fresh $Ce_{0.4}/ZrO_2$ and used $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle) catalysts Fig. S3. H₂-TPR profiles of fresh $Ce_{0.4}/ZrO_2$ and used $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle) catalysts in the range of 100-900 °C.

Fig. S4. NH₃-TPD curves of fresh $Ce_{0.4}/W_{0.1}ZrO_x$ and used $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle) catalysts in the range of 50-700 °C.

Fig. S5. TEM pattern of $W_{0.1}$ ZrO_{*x*} sample

Fig. S6. EDS pattern over $W_{0,1}$ ZrO_x sample

Catalysts	Preparation method	Reaction mixture	T _{80%} , °C	Ref
$Ce_{0.4}/W_{0.1}ZrO_x$	Co-precipitation $(W_{0.1}ZrO_x)$ Impregnation	$[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol. }\%$ N ₂ as balance, GHSV = 60,000 h ⁻¹	226-446 (NO _x)	This work
WO ₃ /CeO ₂ -ZrO ₂	Incipient wetness impregnation	$[NO] = [NH_3] = 550 \text{ ppm}, [O_2] = 6 \text{ vol. }\%$ $[CO_2] = 10 \text{ vol. }\%, [H_2O] = 10 \text{ vol. }\%$ $N_2 \text{ as balance, GHSV} = 90,000 \text{ h}^{-1}$	290-500 (NO)	1
WO ₃ /Ce _{0.65} Zr _{0.35} O ₂	Wet impregnation	$[NO] = [NH_3] = 0.1 \%, [O_2] = 5 \text{ vol. }\%$ $[H_2O] = 10 \text{ vol. }\%, \text{ Ar as balance}$ $GHSV = 30,000 \text{ h}^{-1}$	245-450 (NO _x)	2
$WO_3/ZrO_2-Ce_{0.6}Zr_{0.4}O_2$	Incipient wetness impregnation Solution combustion method	$[NO] = [NH_3] = 1000 \text{ ppm}, [O_2] = 10 \text{ vol. }\%$ $[H_2O] = 10 \text{ vol. }\%, N_2 \text{ as balance}$ $GHSV = 50,000 h^{-1}$	270-510 (NO _x)	3
WO ₃ /Ce-Zr (40-60)	Impregnation	$[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 10 \text{ vol. }\%$ $[CO_2] = 10 \text{ vol. }\%, [H_2O] = 10 \text{ vol. }\%$ $N_2 \text{ as balance, WHSV} = 200 \text{ h}^{-1}$	250-500 (NO _x)	4
WO ₃ -Ce _{0.75} Zr _{0.25} O ₂	Citric-aide sol-gel (Ce _{0.75} Zr _{0.25} O ₂) Incipient wetness impregnation	$[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol. }\%$ N ₂ as balance, GHSV = 30,000 h ⁻¹	290-400 (NO _x)	5

Table. S1 Comparison of the performance over $Ce_{0.4}/W_{0.1}ZrO_x$ catalyst with related literatures.

W-CeZr (SO ₂ -treatment)	Wet impregnation	$[NO] = 900 \text{ ppm}, [NO_2] = 100 \text{ ppm}$ $[NH_3] = 1000 \text{ ppm}, [SO_2] = 100 \text{ ppm}$ $[O_2] = 6 \text{ vol. \%, N_2 as balance}$ $WHSV = 300 \text{ h}^{-1}$	295-500 (NO _x)	6
CeO ₂ -ZrO ₂ -WO ₃	Hydrothermal synthesis Incipient impregnation Co-precipitation Sol-gel	[NO] = [NH ₃] = 600 ppm, [O ₂] = 5 vol. % N ₂ as balance, GHSV = 60,000 h ⁻¹	185-450 (NO) 245-450 (NO) 190-430 (NO) 225-450 (NO)	7
CeO ₂ /ZrO ₂ -S	Impregnation	$[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol. }\%$ N ₂ as balance, GHSV = 30,000 h ⁻¹	235-500 (NO)	8
$Ce_{0.75}Zr_{0.25}O_2-PO_4^{3-}$ (SO ₂ + 10%H ₂ O treatment)	Sol-gel (Ce _{0.75} Zr _{0.25} O ₂) Impregnation	[NO] = [NH ₃] = 500 ppm, [O ₂] = 5 vol. % N ₂ as balance, GHSV = 30,000 h ⁻¹	235-470 (NO _x)	9
NbO _x /Ce _{0.75} Zr _{0.25} O ₂	Sol-gel (Ce _{0.75} Zr _{0.25} O ₂) Impregnation	$[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol. }\%$ $[CO_2] = 10 \text{ vol. }\%, N_2 \text{ as balance}$ $GHSV = 300,000 \text{ h}^{-1}$	190-450 (NO _x)	10
MoO ₃ /CeO ₂ -ZrO ₂	Hydrothermal synthesis (CeO ₂ -ZrO ₂) Impregnation	$[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol. }\%$ He as balance, GHSV = 98,000 h ⁻¹	245-430 (NO _x)	11
NiO-CeO ₂ -ZrO ₂	Sol-gel	$[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol. }\%$ $[CO_2] = 10 \text{ vol. }\%, N_2 \text{ as balance}$ $GHSV = 300,000 \text{ h}^{-1}$	250-450 (NO _x)	12

Reference:

- 1 Y. Li, H. Cheng, D. Li, Y. Qin, Y. Xie and S. Wang, *Chem. Commun.*, 2008, **12**, 1470-1472.
- Z. Fang, B. Yuan, T. Lin, H. Xu, Y. Cao, Z. Shi, M. Gong and Y. Chen, *Chem. Eng. Res. Des.*, 2015, **94**, 648-659.
- 3 T. Baidya, A. Bernhard, M. Elsener and O. Kröcher, *Top. Catal.*, 2013, 56, 23-28.
- 4 F. Can, S. Berland, S. Royer, X. Courtois and D. Duprez, *ACS Catal.*, 2013, **3**, 1120-1132.
- 5 M. Wang, Z. Si, L. Chen, X. Wu and J. Yu, J. Rare Earths., 2013, **31**, 1148-1156.
- 6 Väliheikki, T. Kolli, M. Huuhtanen, T. Maunula and R. L. Keiski, Top. Catal., 2015,58, 1002-1011.
- P. Ning, Z. Song, H. Li, Q. Zhang, X. Liu, J. Zhang, X. Tang and Z. Huang, *Appl. Surf. Sci.*, 2015, **332**, 130-137.
- 8 Z. Han, X. Li, X. Wang, Y. Gao, S. Yang, L. Song, J. Dong and X. Pan, J. Colloid Interface Sci., 2022, 608, 2718-2729.
- 9 Z. Si, D. Weng, X. Wu, R. Ran and Z. Ma, Catal. Commun., 2012, 17, 146-149.
- 10 Z. Ma, X. Wu, Z. Si, D. Weng, J. Ma and T. Xu, *Appl. Catal.*, *B*, 2015, 179, 380-394.
- 11 Z. Liu, H. Su, J. Li and Y. Li, Catal. Commun., 2015, 65, 51-54.
- 12 Z. Si, D. Weng, X. Wu, Z. Ma, J. Ma and R. Ran, *Catal. Today*, 2013, 201, 122-130.

Fig. S1

Fig. S1. SCR performance test results of $Ce_{0.4}/W_{0.1}ZrO_x$ (1st cycle) and $Ce_{0.4}/W_{0.1}ZrO_x$

(2nd cycle) catalyst: (a) NO_x conversion and (b) N_2 selectivity.

(Reaction conditions: 0.5 mL catalyst, $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol.%,

balance with N₂, total flow rate = 500 mL·min⁻¹ and GHSV =60,000 h⁻¹)

Fig. S2

Fig. S2. XRD patterns of fresh $Ce_{0.4}/W_{0.1}ZrO_x$ and used $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle)

catalysts

To investigate the effect of stability reaction on the structure over $Ce_{0.4}/W_{0.1}ZrO_x$ catalyst, the structures of fresh $Ce_{0.4}/W_{0.1}ZrO_x$ and used $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle) catalysts were characterized by XRD. It could be seen from Fig. S2 that the intensities of CeO_2 and ZrO_2 peaks did not change significantly before and after the SCR reaction. Moreover, no new peaks were detected on the XRD curve of $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle) catalyst compared to the fresh $Ce_{0.4}/W_{0.1}ZrO_x$ catalyst. It was demonstrated that the structure of $Ce_{0.4}/W_{0.1}ZrO_x$ catalyst with better stability during the SCR reactions.

Fig. S3

Fig. S3. H₂-TPR profiles of fresh $Ce_{0.4}/W_{0.1}ZrO_x$ and used $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle) catalysts in the range of 100-900 °C.

As shown in Fig. S3, intensities of the three reducing peaks over $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle) catalyst did not decrease significantly compared to the fresh catalyst. In addition, the total H₂ consumption of the fresh $Ce_{0.4}/W_{0.1}ZrO_x$ catalyst only decreased by 0.05 mmol/g after cycling two times. It was indicated that $Ce_{0.4}/W_{0.1}ZrO_x$ catalyst still maintained a good redox property after the SCR reactions.

Fig. S4

Fig. S4. NH₃-TPD curves of fresh $Ce_{0.4}/W_{0.1}ZrO_x$ and used $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle) catalysts in the range of 50-700 °C.

The surface acidities of two catalysts were also investigated by NH₃-TPD characterization technique. It could be seen from Fig. S4 that NH₃-TPD profiles of the fresh $Ce_{0.4}/W_{0.1}ZrO_x$ and used $Ce_{0.4}/W_{0.1}ZrO_x$ (2nd cycle) catalysts both exhibited three desorption peaks, which intensities of the corresponding peaks were similar. In other words, there was no obvious damage in the surface acidity over $Ce_{0.4}/W_{0.1}ZrO_x$ catalyst after the SCR reactions.

Fig. S5

Fig. S5. TEM pattern of $W_{0.1}ZrO_x$ sample

Fig. S6

Fig. S6. EDS pattern over $W_{0.1}ZrO_x$ sample

To further investigate the dispersion of W, Zr and O elements over $W_{0.1}ZrO_x$ sample, EDS mapping was conducted and the results showed that the tungsten species were well dispersed on the support, as presented in Fig. S6.