Anticorrosion behaviour and tribological properties of AZ31 magnesium alloy coated with $Nb_2O_5/Nb_2O_5-Mg/Mg$ layers by magnetron sputtering

Ziyu Ding^a, Qianhong Yuan^b, Hao Wang^b, Yinghong Tang^b, Yimin Tan^{a,*}, Quanguo He^{c,*}

a School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China b School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China c School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

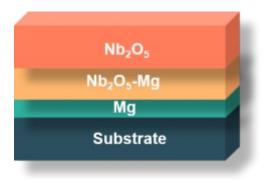


Figure S1. Structural model of M-Nb₂O₅ multilayer coating.

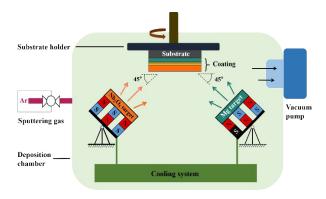


Figure S2. Schematic illustration of the magnetron sputtering system.

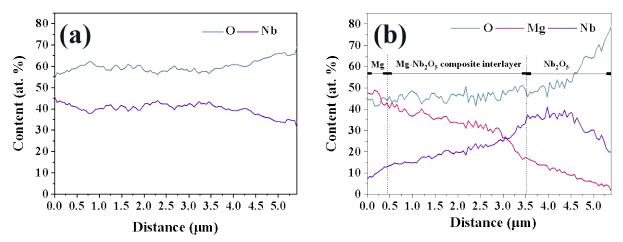


Figure S3. Cross-sectional EDS line scanning of the films: (a) Nb₂O₅, (b) M-Nb₂O₅.

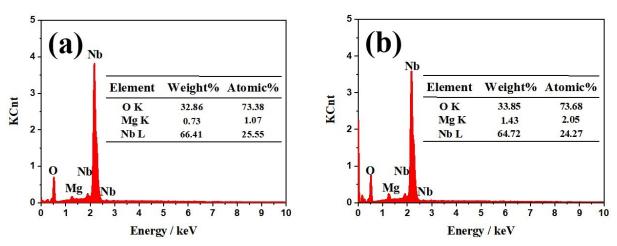
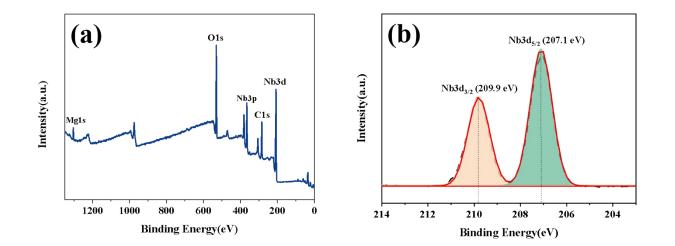



Figure S4. Surface EDS analysis of the layers: (a) Nb₂O₅, (b) M-Nb₂O₅.

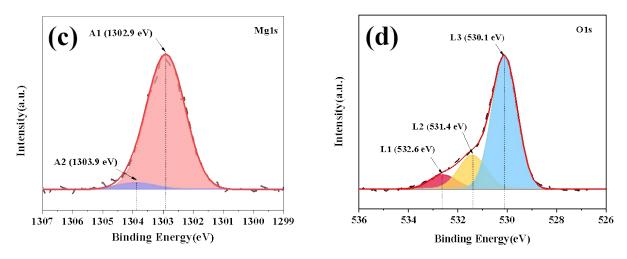


Figure S5. (a) XPS survey spectrum of M-Nb₂O₅ coating and fine spectra of (b) Nb 3d, (c) Mg 1s and (d) O 1s.

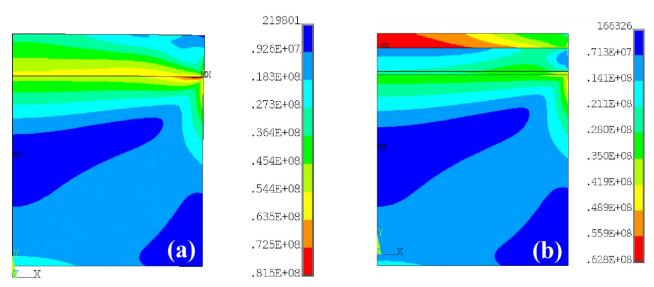


Figure S6. FEM results of residual stress distribution in the coatings: (a) Nb₂O₅ and (b)M-Nb₂O₅.

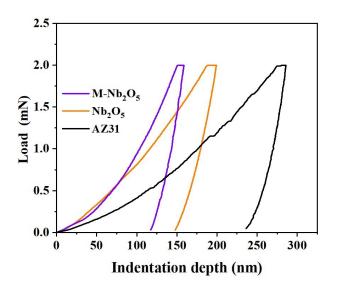


Figure S7. Load-indentation depth curves of naked, Nb₂O₅ and M-Nb₂O₅ coated AZ31 specimens.

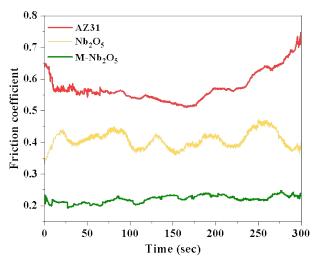


Figure S8. COF curves of untreated, $Nb_2O_5,$ and $M\text{-}Nb_2O_5$ coated AZ31 samples.

Deposition parameters		Bottom layer Composite interlayer		Top layer
		(Mg)	(Nb ₂ O ₅ -Mg)	(Nb ₂ O ₅)
Sputtering Power (W)	Mg target	60	15	1
	Nb₂O₅ target	/	200	250
Deposition time (min)		10	320	210
Ar Gas flow (sccm)		40		
Background pressure (Pa)		1×10 ⁻³		

Table S1. Deposition parameters of M-Nb₂O₅ multilayer coating.

 Table S2. Performance parameters of layer and matrix materials.

Materials properties	Young's	Poisson's	Coefficient
	modulus	ratio	of thermal
	(GPa)		expansion
			(10 ⁻⁶ /K)
AZ31 ¹	45	0.35	26.8
Mg ²	44.8	0.35	25.2
$Nb_2O_5-Mg^3$	52.4	0.275	15.5
$Nb_2O_5^4$	60	0.2	5.8

Reference

- 1 H. Hu, D. Zhang, F. Pan and M. Yang, J Wuhan Univ Technol, 2009, 24, 376-382.
- 2 Taj, B. Prasanth Kumar and K. Vijayasree, Mater. Today: Proc, 2017, 4, 9095-9099.
- 3 H. Guo, S. Gong and H. Xu, *Mater. Sci. Eng.A*, 2002, **325**, 261–269.
- 4 H. C. Chen, C. Y. Huang and P. W. Cheng, *Surf. Coat. Technol*, 2018, **344**, 449-457.

 Table 3S. Corrosion parameters of naked and coated AZ31 specimens in SBF solution.

Sample	E _{corr} (V vs.Ag/AgCl)	i _{corr} (A cm ⁻²)	
AZ31	-1.63	6.46×10 ⁻⁵	
Nb_2O_5	-1.54	3.43×10 ⁻⁵	
M-Nb ₂ O ₅	-1.44	4.04×10 ⁻⁶	