Supporting Information

Synthesis, characterization and application of a novel polyazo dye as a universal acid-base indicator

Jannatul Naime,^a Muhammad Shamim Al Mamun,^{* a} Mohamed Aly Saad Aly,^b Md. Maniruzzaman,^c Md Mizanur Rahman Badal,^c Kaykobad Md Rezaul Karim ^a

^aChemistry Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208, Bangladesh.

^bDepartment of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu 42988, Republic of Korea

^cDepartment of Chemistry, Khulna University of Engineering and Technology, Khulna-9203, Bangladesh

Table of Content

1. General Information	S2
2. Experimental	
2.1 General Procedure of Reactant A	S2
2.2 General Procedure of Reactant B	S3
2.3 Investigation of Dissociation Constant	
2.4 Comparison with Methyl Orange	.S5-S14
2.4.1 Titration Between Different Strength of Acids and Bases	S6-S10
2.4.2 UV- Visible spectral Analysis during Different Types of Titrations	.S11-S14
3. Spectral Data	.S14-S19

General Information:

All reagents were of reagent grade quality, where aniline ($C_6H_5NH_2$), hydrochloric acid (HCl) and sodium hydroxide (NaOH) were purchased from E. Merck (Germany), as well as sodium nitrite (NaNO₂) and sodium chloride (NaCl) were purchased from Sigma-Aldrich (Germany), and used without further purification. Thin Layer Chromatography (TLC) analyses were performed using Merck silica gel aluminum plates 60 F₂₅₄. SHIMADZU 4200 FT-IR spectrophotometer was used for recording IR-Spectra. ¹H-NMR spectra were recorded on BRUKER DPX 400 or DMX 500 instruments; chemical shifts are given in ppm and are relative

to Me_4Si as an internal standard or to the residual solvent peak on a Varian 500 Mz spectrometer AV-500 at 25°C. The absorption spectra of the compounds were scanned on UV-Visible double-beam spectrophotometer (LABOMED, INC, UVD-3200 PC) at 298 K through a quartz cell with a path length of 1 cm.

Experimental:

General Procedure of *p*- aminoazobenzene (PAAB)¹¹

Scheme S1. Synthesis routes of *p*- aminoazobenzene (PAAB).

A solution of diazoaminobenzene (8 g, 40 mmol), aniline (17 mL, 180 mmol) and aniline hydrochloride (4 g, 30 mmol), was heated with the addition of NaNO₂ (4.2 mL, 95%) at 40 °C for 1 hour under continuous stirring. Next, glacial acetic acid (6 mL, 99%) was poured into the mixture and retained for 10 minutes. Following, crude product was dried, recrystallized with

CCl₄. The IR (KBr) spectrum of the product (ν cm⁻¹): 2375, 1475, 1400, 630. The synthesis procedure of PAAB is presented in **Scheme S1**.

General Procedure of Sodium 4-[(*E*)-{4-[(4-aminophenyl)diazenyl]phenyl} diazenyl]benzene sulfonate (SAPD₂BS) ^{1, 2}

Scheme S2. Synthesis routes of Sodium 4-[(E)-{4-[(4-aminophenyl)diazenyl]phenyl} diazenyl]benzene sulfonate (SAPD₂BS).

A solution of sulfanilic acid (3 g, 17.34 mmol), sodium carbonate (Na₂CO₃, 7.5 mmol, 0.8 g) and 15 mL of water was first mixed in a round bottom flask. Following, the flask was placed in a hot (90 °C) water bath until a clear solution is obtained. Next sodium nitrite (1 g, 14.5 mmol, 98%) was added and then the mixture containing flask was placed in an ice water bath to obtain a significant amount of solid precipitate. Furthermore, a basic solution of PAAB (7 g, 35.6 mmol) was prepared as presented in **Scheme S2** of the SI, added into the abovementioned mixture under continues stirring. Next, the flask containing the mixture was placed in an ice-water bath for 15 to 20 minutes. Following, the mixture was heated with sodium chloride (3 g) until dissolved, and then slowly cooled in an ice water bath for 30-40 minutes. Finally, the crude product was recrystallized with n-hexane and Dichloromethane (DCM), as shown in **Scheme S2**. Red powder, mp 178 °C, yield 85%. The IR (KBr) spectrum of the product (ν cm⁻¹): 3041, 3381, 1654, 1600, 1400, 1371, 1170. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J=8.8 Hz, 2H, Ar), 7.92 (d, J=7.2 Hz, 2H, Ar), 7.56-7.51 (t, J=9.6 Hz, 4H, Ar), 7.59 (d, J=6.8 Hz, 2H, Ar), 7.54 (d, J=6.8 Hz, 2H, NH₂), 4.89 and 3.33 (MeOD).

Figure S1. Thermo gravimetric analysis (TGA) and Differential scanning calorimetry (DSC) of SDMAPD₃BS.

Investigation of Dissociation Constant ^{33 44}

The buffer solution of different pH was prepared by mixing with both sodium hydroxide (NaOH) and boric acid. The synthesized compound (SDMAPD₃BS) was used as an indicator and the recorded absorbance at λ_{max} 387 nm and 454 nm was determined in the mixed aqueous solution of 10 wt% ethanol. The acidic form of SDMAPD₃BS (exists alone in acidic solutions) absorbed light in the green spectral range at a wavelength of $\lambda_{max} \approx 455$ nm, and appeared as the complementary color red. On the other hand, the yellow color form existing alone in basic solutions absorbed light in the violet spectral range at a wavelength of $\lambda_{max} \approx 394$ nm. The absorbance and dissociation constant (K_d) values of SDMAPD₃BS are recorded in **Table S1** as well as the linear relationship between pK and pH has shown in **Figure S2**.

Volume of 0.2M NaOH (mL)	Volume of Boric Acid 0.2M(mL)	pH of the Solution	Absorbance (A)
0.0	10	1.7	0.898
0.5	9.5	2.5	0.892
1.0	9.0	4.4	0.887
1.5	8.5	5.3	0.882
2.0	8.0	6.1	0.878
2.5	7.5	7.0	0.873
3.0	7.0	8.1	0.868
3.5	6.5	8.8	0.861
4.0	6.0	9.1	0.859
4.5	5.5	9.5	0.853
5.0	5.0	9.8	0.847
5.5	5.5	10.2	0.842
Na ₂ CO ₃	0.0	10.5	0.864

Table S1. Absorbance and Dissociation Constant K_d of SDMAPD₃BS.

Figure S2. The comparison of dissociation constant between SDMAPD₃BS and MO.

Comparison with Methyl Orange:

SDMAPD₃BS showed four different colors (blackish red, reddish orange, orange and yellow) at different pH ranges within the pH range of 1-14, as summarized in **Table 2S**. However, among these colors, there were three prominent colors observed in a perfect pH gap, indicating the acidic and basic medium of any solution along with providing the exact endpoint.

nЦ	Compound Name					
hu	Methyl Orange	Synthesized Compound				
1	Red	Blackish Red				
2	Red	Blackish Red				
3	Red	Reddish Orange				
4	Reddish Orange	Reddish Orange				
5	Yellowish Orange	Orange				
6	Yellow	Orange				
7	Yellow	Orange				
8	Yellow	Light Orange				
9	Yellow	Yellow Orange				
10	Yellow	Yellow				
11	Yellow	Yellow				
12	Yellow	Yellow				
13	Faint Yellow	Yellow				
14	Faint Yellow	Yellow				

Table S2. Change of color with pH variation.

Titration between different strength of acids and bases:

Titration of the acidic solution was performed with 2-3 drops of both indicators (Methyl orange and synthesized compound) in two different conical flasks, pH meter was placed into the conical flask, and the base was added through a burette drop wise. The color of the solution was dramatically changed when 1-2 drops of either indicator was added, as shown in **Figure S3**. Furthermore, the endpoints for those titrations were recorded and presented in **Table S3** - **Table S9**.

Figure S3. Titration between strong acid and strong base with the end points for MO and SDMAPD₃BS are 10.7 and 11.6, respectively, (a); weak acid and strong base with the end points for MO and SDMAPD₃BS are 10.4 and 11.5, respectively, (b); strong acid and weak base with the end points for MO and SDMAPD₃BS are 6.1 and 6.7, respectively, (c); weak acid and weak base with the end points for MO and SDMAPD₃BS are 7.9 and 9.1, respectively, (d); ploybasic acid and strong base with the end points for MO and SDMAPD₃BS are 7.9 and 9.1, respectively, (d); ploybasic acid and strong base with the end points for MO and SDMAPD₃BS are 10.7 and (7.5, 11.6), respectively, (e); strong acid + weak acid and strong base with the end points for MO and SDMAPD₃BS are 9.7 and (3.8, 9.9), respectively, (g).

*MO: Methyl Orange *SDMAPD₃BS: Synthesized Compound *BT: Before Titration *AT: After Titration

NaOH	HCl Unnegated	% of Bostion	% of Total Volume of Solution (mL)	рН	
(mL)	(mL)	Reaction	Solution (IIIL)	MO	SDMAPD ₃ BS
0.0	10.0	0.0	10.0	0.8	0.7
1.0	9.0	10.0	11.0	0.9	0.8
2.0	8.0	20.0	12.0	1.0	0.9
3.0	7.0	30.0	13.0	1.1	1.0
4.0	6.0	40.0	14.0	1.2	1.1
5.0	5.0	50.0	15.0	1.3	1.2
6.0	4.0	60.0	16.0	1.5	1.3
7.0	3.0	70.0	17.0	1.7	1.4
8.0	2.0	80.0	18.0	1.9	1.5
9.0	1.0	90.0	19.0	2.2	1.6
9.5	0.5	95.0	19.5	2.5	1.7
9.8	0.2	98.0	19.8	2.9	1.9
9.9	0.1	99.0	19.9	3.4	2.4
10.0	0.0	100.0	20.0	10.6	11.7
10.1	0.0	-	20.1	11.5	12.1
10.5	0.0	-	20.5	11.8	12.4
11.0	0.0	-	21.0	12.0	12.7
11.5	0.0	-	21.5	12.1	12.9
12.0	0.0	-	22.0	12.2	13.1
12.5	0.0	-	22.5	12.3	13.2
13.0	0.0	-	23.0	12.3	13.2

Table S3. Titration between Strong Acid and Strong Base.

Table S4. Titration between Weak Acid and Strong Base.

NaOH	СН ₃ СООН	% of	Total Volume		рН
(mL)	Unreacted (mL)	Reaction	(mL)	MO	SDMAPD ₃ BS
0.0	10.00	0.0	10.0	2.5	2.5
1	1.25	87.50	11.0	3.1	3.5
2	0.63	93.70	12.0	3.3	3.9
3	0.32	96.80	13.0	3.5	4.2
3.5	0.13	98.70	13.5	3.8	4.4
4	0.08	99.20	14.0	3.9	4.6
4.5	0.05	99.50	14.5	4.1	4.8
4.7	0.0063	99.93	14.7	4.8	5.3
4.9	0.0	99.99	14.9	10.4	11.5
5.3	0.0	-	15.3	10.9	12.1
5.4	0.0	-	15.4	11.1	12.3
5.5	0.0	-	15.5	11.3	12.4

NH ₄ OH	HCl	% of	Total Volume	рН	
Added	Unreacted	Reaction	of Solution		
(mL)	(mL)		(mL)	MO	SDMAPD ₃ BS
0.0	10.0	0.0	10.0	1	0.7
3.0	7.9	21.0	13.0	1.1	0.8
6.0	6.3	37.0	16.0	1.2	0.9
9.0	5.0	50.0	19.0	1.3	1
12.0	4.0	60.0	22.0	1.4	1.1
14.0	3.2	68.0	24.0	1.5	1.2
16.0	2.5	75.0	26.0	1.6	1.3
18.0	2.0	80.0	28.0	1.7	1.5
19.0	1.6	84.0	29.0	1.8	1.7
19.5	1.0	90.0	29.5	2.1	1.9
19.9	0.63	93.7	29.9	2.9	2.4
20.1	0.0002	99.9	30.1	6.1	6.7
21.0	0.00002	-	31.0	6.7	7.5
22.0	0.0	-	32.0	7.4	7.9
23.0	0.0	-	33.0	7.8	8.2
24.0	0.0		34.0	8.2	8.5
25.0	0.0	-	35.0	8.5	8.7
26.0	0.0	-	36.0	8.8	8.9
28.0	0.0	-	38.0	9.1	9.1
30.0	0.0	-	40.0	9.5	9.5
32.0	0.0	-	42.0	10.2	10
34.0	0.0	-	44.0	11.6	11.5

Table S5. Titration between Strong Acid and Weak Base.

Table S6. Titration between Weak Acid and Weak Base.

NH ₄ OH	CH ₃ COOH	% of Deaction	Total Volumo of		рН
Added (mL)	Unreacted (mL)	Keaction	Solution (mL)	МО	SDMAPD ₃ BS
0.0	10.0	0.0	10.0	2.5	2.5
1.0	9.0	10.0	11.0	3.7	3.5
3.0	7.0	30.0	13.0	4.2	3.9
5.0	5.0	50.0	15.0	4.5	4.1
7.0	3.0	70.0	17.0	4.7	4.3
9.0	1.0	90.0	19.0	4.9	4.5
9.5	0.5	95.0	19.5	5.1	4.6
9.8	0.2	98.0	19.8	5.5	5.3
10.0	0.0	100.0	20.0	7.9	9.1
11.0	0.0	-	21.0	8.4	9.4
13.0	0.0	-	23.0	8.7	9.6
15.0	0.0	-	25.0	8.9	9.7
17.0	0.0	-	27.0	9.1	9.8

NaOH Addad	H ₂ SO ₄	% of Position	Total Volume of Solution (mL)		рН
(mL)	Unreacted (mL)	Reaction	Solution (IIIL)	МО	SDMAPD ₃ BS
0.0	10.0	0.0	10.0	0.2	0.2
1.0	8.78	12.2	11.0	0.4	0.4
2.0	7.56	24.4	12.0	0.8	0.8
3.0	6.34	36.6	13.0	1.2	1.2
3.5	5.12	48.8	13.5	1.5	1.6
4.0	3.90	61.0	14.0	1.7	1.8
4.5	3.29	67.1	14.5	2.0	2.0
4.8	2.92	70.8	14.8	2.5	2.3
4.9	2.80	72.0	14.9	4.1	7.5
5.0	2.68	73.2	15.0	10.7	7.6
5.5	2.07	79.3	15.5	11.3	7.8
6.0	1.46	85.4	16.0	11.4	7.9
6.7	0.61	93.9	16.7	11.5	8.1
7.1	0.12	98.8	17.1	11.6	8.4
7.2	0.00	100.0	17.2	11.7	11.6
7.5	-	-	17.5	11.8	12.1
7.9	-	-	17.9	11.9	12.5
8.2	-	-	18.2	12.0	12.8
8.5	-	-	18.5	12.1	13.0

Table S7. Titration between Polybasic Acid and Strong Base.

 Table S8. Titration between Strong Acid + Weak Acid and Strong Base.

NaOH Added	Boric Acid+HCl	% of Reaction	Total Volume of Solution		рН
(mL)	Unreacted (mL)		(mL) <u>N</u>		SDMAPD ₃ BS
0.0	10.0	0.0	10.0	0.1	0.1
1.0	8.57	14.3	11.0	0.3	0.3
2.0	7.14	28.6	12.0	0.5	0.5
2.5	6.42	35.8	12.5	0.7	0.7
3.0	5.71	42.9	13.0	0.8	1.4
3.1	5.57	44.3	13.1	0.9	2.1
3.4	5.14	48.6	13.4	1.1	7.4
3.8	4.57	54.3	13.8	1.5	7.7
4.2	4.00	60.0	14.2	2.1	7.8
4.6	3.71	62.9	14.6	2.5	8.0
4.9	3.57	64.3	14.9	3.2	8.2
5.1	3.29	67.1	15.1	10.6	11.6
5.5	2.86	71.4	15.5	11.1	11.9
6.0	1.42	85.8	16.0	11.5	12.1
7.0	0.00	100.0	17.0	11.8	12.2

NaOH +	Boric Acid +	% of Departion	Total Volumo of		рН
Added (mL)	Unreacted (mL)	Keaction	Solution (mL)	MO	SDMAPD ₃ BS
0.0	10.0	0.0	10.0	0.5	0.7
2.0	8.77	12.3	12.0	0.6	1.2
4.0	7.55	24.5	14.0	0.8	1.7
4.5	7.24	27.6	14.5	0.9	2.2
4.7	7.12	28.8	14.7	0.9	3.8
5.0	6.93	30.7	15.0	1.0	4.3
6.0	5.70	4.30	16.0	1.3	4.7
7.0	3.86	61.4	17.0	1.7	5.3
8.0	2.02	79.8	18.0	2.2	5.9
9.0	0.80	92.00	19.0	2.9	6.4
9.5	0.18	98.2	19.5	3.8	6.8
9.9	0.00	100.00	19.9	9.7	9.9
10.5	-	-	20.5	10.2	10.3
11.0	-	-	21.0	10.6	10.7
12.0	-	-	22.0	10.9	10.9
13.0	-	-	23.0	11.1	11.1
14.0	-	-	24.0	11.3	11.3
15.0	-	-	25.0	11.4	11.5

Table S9. Titration between Strong Acid + Weak Acid and Strong Base + Weak Base

UV- Visible Spectral Analysis during Different Types of Titrations

During titration, the pH of the solution was changed from lower pH to higher pH and the absorbance showed either hypsochromic shift or blue shift. In titration between a strong acid and strong base: the equivalence point (EP) was 7.0 for MO and 7.05 for SDMAPD₃BS, the inflection points (IP) were 3.4 and 10.7 for MO and 2.4 and 11.6 for SDMAPD₃BS, and the pH changing range for SDMAPD₃BS (9.2) was greater than for MO (7.3). In titration between a weak acid and a strong base, EP was 7.6 for MO and 8.4 for SDMAPD₃BS, IP is 4.8 and 10.4 for MO and 5.3 and 11.5 for SDMAPD₃BS, and the pH changing range for SDMAPD₃BS, IP is 4.8 for SDMAPD₃BS (6.2) is greater than for MO (5.6). In titration between a strong acid and weak base, EP is 4.5 for MO and 4.55 for SDMAPD₃BS, IP is 2.9 and 6.1 for MO and 2.4 and 6.7 for SDMAPD₃BS, and the pH changing range for SDMAPD₃BS, IP is 2.9 and 6.1 for MO and 2.4 and 6.7 lor SDMAPD₃BS, and the pH changing range for SDMAPD₃BS, IP is 2.9 and 6.1 for MO and 2.4 and 6.7 lor SDMAPD₃BS, and the pH changing range for SDMAPD₃BS, IP is 4.8 and 10.4 for MO and 4.55 for SDMAPD₃BS, IP is 2.9 and 6.1 for MO and 2.4 and 6.7 for SDMAPD₃BS, and the pH changing range for S

between a weak acid and weak base, EP is 6.7 for MO and 7.2 for SDMAPD₃BS, IP is 5.5 and 7.9 for MO and 5.3 and 9.1 for SDMAPD₃BS, and the pH changing range for SDMAPD₃BS (3.8) is greater than for MO (2.4), as shown in **Figure S4**. In titration between polybasic acid and strong base, EP is 7.4 for MO and two values of (4.9, 10.0) for SDMAPD₃BS, IP is 4.1 and 10.7 for MO and two sets of (2.3, 7.5) and (8.4, 11.6) for SDMAPD₃BS, and the pH changing range for SDMAPD₃BS (3.2, 5.2) is less than for MO (6.6). In this case, SDMAPD₃BS contains two pK values of 3.5 and 9.1. In titration between strong acid + weak acid and strong base, EP is 6.9 for MO and two values of (4.75, 9.90) for SDMAPD₃BS, IP is 3.2 and 10.6 for MO and two sets of (2.1, 7.4) and (8.2, 11.8) for SDMAPD₃BS, and the pH changing range for SDMAPD₃BS (3.6, 5.3) is less than for MO (7.4). In this case, SDMAPD₃BS contains two pK values of 3.3 and 9.2. In titration between strong acid + weak acid and strong base + weak base, EP is 6.87 for MO and two EP (3.0, 8.35) for SDMAPD₃BS, IP is 3.8 and 9.9 for MO and two sets of (2.2, 3.8) and (6.8, 9.9) for SDMAPD₃BS, and the pH changing range for SDMAPD₃BS (1.6, 3.1) is less than for MO (6.1). In this case, SDMAPD₃BS contains two pK values of 2.8 and 8.6, as show in **Figure S5**.

Figure S4. UV- Visible spectra of the acidic solution was shifted from right to left and titration between strong acid (HCl) and strong base (NaOH) (a), weak acid (CH₃COOH) and strong base (NaOH) (b), strong acid (HCl) and weak base (NH₄OH) (c), weak acid (CH₃COOH) and weak base (NH₄OH) (d).

*MO: Methyl Orange

* SDMAPD₃BS: Synthesized compound

Figure S5. polybasic acid (H₂SO₄) and strong base (NaOH) (a), strong acid (HCl) + weak acid (CH₃COOH) and strong base (NaOH) (b), strong acid (HCl) + weak acid (CH₃COOH) and strong base (NaOH) + weak base (NH₄OH) (c). *MO: Methyl Orange * SDMAPD₃BS: Synthesized compound

The structure of SDMAPD₃BS is mostly analogous to MO with some dissimilarities. It is noteworthy that increasing the number of azo groups can affect the solubility of the compound in polarity basis, and further increase the stability of the compound.⁵⁵ From the structural information, SDMAPD₃BS has three azo groups while MO has one azo group, so, SDMAPD₃BS is more stable and less dissociated compared with MO. Furthermore,

SDMAPD₃BS have two pH ranges: one range (2.1 - 3.8) fits within strong acidic titration, while the other range (8.2 - 9.8) fits within weak basic titration. However, methyl orange has only one pH range (3.1 - 4.2). SDMAPD₃BS exists in two pH ranges, therefore it forms equivalence point in same type of titrations unlike MO, as can be observed in **Figure S4** and **Figure S5**. SDMAPD₃BS displayed color change in titration as an indicator similar to MO. However, MO has one azo group so it can take only one proton from media to convert from basic nature to acidic nature.⁶⁶ SDMAPD₃BS has two pH ranges and three azo groups. At pH range of (8.2 - 9.8) it shows a yellow color when it takes one proton in first step similar to MO. Similarly, at pH range of (2.1 - 3.8), it displays an orange color when it takes two protons. Furthermore, SDMAPD3BS reveals different equivalence points in individual pH ranges (at different titrations). Additionally, SDMAPD₃BS reveals two pK_a values in different types of titrations, as presented in **Figure S4 and Figure S5** and **Table S3-S9**.

Spectral Data:

Figure S6. FT-IR Spectrum of PAAB.

Figure S7. FT-IR Spectrum of SAPD₂BS.

Figure S8. FT-IR spectrum of SDMAPD₃BS.

Figure S9. Compressed image (a) and expanded image (b) of the 1H-NMR spectrum of SAPD₂BS.

Figure S10. Expanded (a) and compressed (b) images of 1H-NMR spectrum of SDMAPD₃BS.

Figure S11. and images of ¹³C-NMR of SDMAPD₃BS. Expanded (a) compressed (b)

References:

- 1. M. Liang, Z.-Y. Wang, L. Zhang, H.-Y. Han, Z. Sun and S. Xue, *Renewable Energy*, 2011, **36**, 2711-2716.
- 2. D. Hofmann, J. Hofmann, L.-E. Hofmann, L. Hofmann and M. R. Heinrich, *Organic Process Research & Development*, 2015, **19**, 2075-2084.
- 3. B. John, in *Advances in Inorganic Chemistry*, Elsevier, 2013, vol. 65, pp. 217-310.
- 4. B. Tanganov and I. Alekseeva, *Russian journal of general chemistry*, 2006, **76**, 1724-1728.
- 5. J. Del Nero, R. De Araujo, A. Gomes and C. De Melo, *The Journal of chemical physics*, 2005, **122**, 104506.
- 6. A. G. Gilani, V. Taghvaei, E. M. Rufchahi and M. Mirzaei, *Journal of Molecular Liquids*, 2019, **273**, 392-407.