Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Condensation of Acrylonitrile and Benzyl Cyanide: Construction of α-Amino-β-cyano Cyclohexene Skeletons

Wei Zhang,^c Chuan-Su Tang,^d Shi-Qun Xiang ^{a,b,*}

^aKey Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin

Normal University), Ministry of Education, Changchun, 130103, China.

^bCollege of Chemistry, Jilin Normal University, Siping, 136000, China.

^c Chongqing university of Science and Technology, Chongqing, 401331, China.

^d Jiangjin No. 5 Middle School, Chongqing, 402260, China.

*To whom correspondence should be addressed. E-mail: xiangshq@jlnu.edu.cn

Table of contents:

1. General information ······	S2
2. Experimental procedure	S2
3. Characterization data for the products	S4
4. X-ray structure determinations	S11
5. Crystallographic data of compounds	S12
6. ¹ H NMR and ¹³ C NMR spectra of compounds	S13
7. References	S38

1. General Information

Chemicals. Unless otherwise stated, commercial grade chemicals were used without further purification. Tetrahydrofuran, 1,2-dimethoxyethane, dioxane and toluene were distilled over sodium under N_2 . Volume reduction and drying steps were performed in *vacuo*.

General Physical Measurements. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance III and chemical shifts were expressed in δ ppm values with reference to tetramethylsilane (TMS) as internal standard. HR-MS (ESI) spectra were obtained using a Bruker Impact II quardrupole time off light mass spectrometer. The single crystal data were collected on an Oxford Diffraction Supernova dual diffractometer equipped with an Oxford Cryostream 700 low-temperature apparatus.

2. Experimental procedure

2.1 General experimental procedure without column chromatography for th e synthesis of *4-amino-1,2,5,6-tetrahydro-[1,1'-biphenyl]-1,3-dicarbonitriles* (3a-3g, 3i, 3j, 3l, 3o, 3p, 3q, 3r, 3s, 3t).

A mixture of phenylacetonitrile 1 (0.4 mmol), acrylonitrile (0.84 mmol) and potassium *tert*-butoxide (*t*-BuOK) (1.2 mmol) in tetrahydrofuran (3.0 mL) was stirred at room temperature for 2 h. After cooling down to room temperature, the mixture was added with 1 M HCl solution to adjust the solution to pH < 3 and filtered. The acidic solution was extracted with dichloromethane (5 mL). The aqueous solution was then added with saturated sodium hydroxide aqueous solution to pH = 10. The basic solution was then extracted with chloroform (20 mL X 3). The organic layers were combined and dried with Na₂SO₄. The dried mixture was then concentrated under reduced pressure. The products were collected and dried in vacuo.

2.2 General experimental procedure for the synthesis of 4-amino-1,2,5,6-tetr ahydro-[1,1'-biphenyl]-1,3-dicarbonitrile (3).

A mixture of phenylacetonitrile 1 (0.4 mmol), acrylonitrile (0.84 mmol) and potassium *tert*-butoxide (*t*-BuOK) (1.2 mmol) in tetrahydrofuran (3.0 mL) was stirred at room temperature for 2 h. The mixture was diluted with dichloromethane (10 mL), filtered through a pad of silica gel, and concentrated under reduced pressure. The crude product was purified on a silica gel column eluted with petroleum ether/ethyl acetate (2:1 v/v) to afford the products **3a-3t**.

2.3 General experimental procedure for the synthesis of 3-(2-fluorophenyl)pe ntane-1,3,5-tricarbonitrile (3n').

A mixture of phenylacetonitrile 1n (0.4 mmol), acrylonitrile (0.84 mmol) and

potassium *tert*-butoxide (*t*-BuOK) (1.2 mmol) in tetrahydrofuran (3.0 mL) was stirred at room temperature for 2 h. The mixture was diluted with dichloromethane (10 mL), filtered through a pad of silica gel, and concentrated under reduced pressure. The crude product was purified on a silica gel column eluted with petroleum ether/ethyl acetate (3:1 v/v) to afford the products **3n**' as colorless solid in a yield of 36% (34.7 mg).

2.4 General experimental procedure for the synthesis of 3-(2-fluorophenyl)pe ntane-1,3,5-tricarbonitrile (3n).

A mixture of **3n'** (0.12 mmol, 29.0 mg) and potassium *tert*-butoxide (*t*-BuOK) (0.12 mmol, 13.5 mg) in tetrahydrofuran (1.0 mL) was stirred at room temperature for 2 h. The mixture was diluted with dichloromethane (10 mL), filtered through a pad of silica gel, and concentrated under reduced pressure. The crude product was purified on a silica gel column eluted with petroleum ether/ethyl acetate (2:1 v/v) to afford the products **3n** in a yield of 53% (15.3 mg).

2.5 Gram scale experimental procedure for the synthesis of 4-amino-1,2,5,6tetrahydro-[1,1'-biphenyl]-1,3-dicarbonitrile (3a).

A mixture of phenylacetonitrile **1a** (43.0 mmol, 5.0 g), acrylonitrile (90.3 mmol, 4.8 g) and potassium *tert*-butoxide (*t*-BuOK) (129.0 mmol, 15.8 g) in tetrahydrofuran (300.0 mL) was stirred at room temperature for 2 h. After cooling down to room temperature, the mixture was added with saturated HCl solution to adjust the solution to pH < 3 and filtered. The acidic solution was concentrated under reduced pressure. The concentrated solution was separated and then exacted with chloroform for several times. The combined organic layers were collected and the solvents were and concentrated under reduced pressure. The product **3a** was collected and dried in vacuo to a yield of 71% (6.8 g).

2.6 General experimental procedure for the synthesis of 4-amino-5,6,7,8-tetr a-hydroquinazoline-6-carbonitrile.

A mixture of 4-amino-1,2,5,6-tetrahydro-[1,1'-biphenyl]-1,3-dicarbonitrile **3** (0.20 mmol), benzonitrile derivatives **4** (0.20 mmol) and potassium tert-butoxide (*t*-BuOK) (0.25 mmol) in tetrahydrofuran (1.0 mL) was stirred at 130 °C for 24 h in N₂. After cooling to room temperature, the reaction mixture was diluted with dichloromethane (10 mL), filtered through a pad of silica gel, and concentrated under reduced pressure. The crude product was purified on a silica gel column eluted with petroleum ether/ethyl acetate (4:1 to 1:1 v/v) to afford the products **5a-5d**.

3. Characterization Data for the Products

4-amino-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3a): Yield, 84% (75.0 mg); colorless solid; melting point, 142-144 °C;¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.4 Hz, 2H), 7.44 (t, J = 7.2 Hz, 2H), 7.41 – 7.35 (m, 1H), 4.66 (s, 2H), 2.76 (dd, J = 33.9, 15.5 Hz, 3H), 2.39 (d, J = 19.0 Hz, 1H), 2.34 – 2.16 (m, 2H) ¹³C NMR (101 MHz, CDCl₃) δ 155.24 (s), 138.49 (s), 129.23 (s), 128.59 (s), 125.59 (s), 121.70 (s), 119.35 (s), 71.04 (s), 40.93 (s), 35.97 (s), 31.35 (s), 26.33 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₄H₁₃N₃Na, 246.1007; found, 246.1005. IR (neat) 3430, 3332, 3194, 2187, 2170, 1614, 1453, 1400, 1160 cm⁻¹.

4-amino-4'-methyl-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3b): Yield, 85% (80.7 mg); colorless solid; melting point, 140-142 °C;¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 4.57 (s, 2H), 2.38 (s, 3H), 2.43 – 2.33 (m, 4H), 2.29 (ddd, J = 11.6, 5.9, 2.9 Hz, 1H), 2.20 (ddd, J = 13.5, 11.2, 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.97 (s), 138.50 (s), 135.50 (s), 129.86 (s), 125.46 (s), 121.80 (s), 119.27 (s), 71.48 (s), 40.54 (s), 35.95 (s), 31.45 (s), 26.38 (s), 21.03 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₅H₁₅N₃Na, 260.1163; found, 260.1159. IR (neat) 3456, 3356, 3237, 2927, 2241, 2183, 1241, 1193, 846,813 cm⁻¹.

4-amino-4'-methoxy-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3c): Yield, 84% (85.1 mg); colorless solid; melting point, 146-148 °C;¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.36 (m, 2H), 6.97 – 6.92 (m, 2H), 4.56 (s, 2H), 3.84 (s, 3H), 2.83 – 2.65 (m, 3H), 2.41 – 2.24 (m, 2H), 2.18 (ddd, J = 13.3, 11.0, 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.53 (s), 154.94 (s), 130.39 (s), 126.79 (s), 121.88 (s), 119.25 (s), 114.47 (s), 71.48 (s), 55.42 (s), 40.12 (s), 36.01 (s), 31.56 (s), 26.37 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₅H₁₅N₃ONa, 276.1112; found, 276.1108. IR (neat) 3453, 3359, 2931, 2854, 2242, 2183, 1643, 1413, 1033, 828 cm⁻¹.

4-amino-4'-(tert-butyl)-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3d): Yield, 85% (95.0 mg); colorless solid; melting point, 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.38 (m, 4H), 4.50 (s, 2H), 2.84 – 2.68 (m, 3H), 2.42 – 2.21 (m, 3H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 154.71 (s), 151.68 (s), 135.40 (s), 126.14 (s), 125.28 (s), 121.71 (s), 119.13 (s), 71.87 (s), 40.49 (s), 35.94 (s), 31.43 (s), 31.24 (s), 29.73 (s), 26.41 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₈H₂₁N₃Na, 302.1633; found, 302.1618. IR (neat) 3346, 2958, 2925, 2854, 2187, 1563, 1412, 1020, 928, 830 cm⁻¹.

4-amino-5,6-dihydro-[1,1':4',1''-terphenyl]-1,3(2H)-dicarbonitrile (3e): Yield, 82% (98.2 mg); colorless solid; melting point, 201-203 °C;¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.64 (m, 2H), 7.64 – 7.59 (m, 2H), 7.59 – 7.54 (m, 2H), 7.52 – 7.46 (m, 2H), 7.41 (ddd, J = 7.3, 3.8, 1.2 Hz, 1H), 4.57 (s, 2H), 2.90 – 2.72 (m, 3H), 2.46 – 2.24 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.85 (s), 141.55 (s), 139.92 (s), 137.34 (s), 128.93 (s), 127.95 – 127.87 (m), 127.83 (d, J = 24.4 Hz), 127.09 (s), 126.06 (s), 121.62 (s), 119.17 (s), 71.59 (s), 40.70 (s), 35.94 (s), 31.48 (s), 26.39 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₂₀H₁₇N₃Na, 322.1320; found, 322.1317. IR (neat) 3435, 3348, 3244, 2924, 2234, 2187, 1655, 1410, 833, 767 cm⁻¹.

4-amino-4'-bromo-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3f): Yield, 77% (93.0 mg); colorless solid; melting point, 144-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.7 Hz, 2H), 7.38 (t, J = 7.9 Hz, 2H), 4.55 (s, 2H), 2.75 (ddd, J = 22.4, 21.3, 11.1 Hz, 4H), 2.30 (ddd, J = 30.1, 16.6, 3.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.67 (s), 137.49 (s), 135.02 (s), 132.39 (s), 127.37 (s), 122.76 (s), 121.12 (s), 71.42 (s), 35.81 (s), 31.39 (s), 26.27 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₄H₁₂BrN₃Na, 324.0112; found, 324.0109. IR (neat) 3453, 3358, 2853, 2926, 2243, 2182, 1641, 1412, 1162, 846 cm⁻¹.

4-amino-4'-chloro-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3g): Yield, 65% (67.0 mg); colorless solid; melting point, 155-159 °C;¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 4H), 4.56 (s, 2H), 2.84 – 2.65 (m, 3H), 2.42 – 2.13 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.72 (s), 136.95 (s), 134.66 (s), 129.43 (s), 127.07 (s), 121.21 (s), 118.97 (s), 71.37 (s), 40.53 (s), 35.88 (s), 31.43 (s), 26.28 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₄H₁₂ClN₃Na, 280.0617; found, 280.0613. IR (neat) 3453, 3358, 3233, 2925, 2244, 2182, 1642, 1413, 1097, 825 cm⁻¹.

4-amino-4'-fluoro-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3h): Yield, 41% (39.5 mg); colorless solid; melting point, 119-121 °C;¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.44 (m, 2H), 7.17 – 7.10 (m, 2H), 4.53 (s, 2H), 2.86 – 2.66 (m, 3H), 2.42 – 2.27 (m, 2H), 2.25 – 2.17 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.65 (s), 153.23 (d, *J* = 237.0 Hz), 134.26 (s), 127.46 (d, J = 8.0 Hz), 121.41 (s), 118.96 (s), 116.23 (d, J = 21.0 Hz), 71.59 (s), 40.36 (s), 36.07 (s), 31.58 (s), 26.34 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₄H₁₂FN₃Na, 264.0912; found, 264.0909. IR (neat) 3439, 3925, 2852, 2240, 2184, 1640, 1563, 1413, 1099, 831 cm⁻¹.

4-amino-3'-methoxy-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3i): Yield, 75% (76.0 mg); colorless solid; melting point, 140-142 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, J = 8.0 Hz, 1H), 7.07 (ddd, J = 7.8, 1.9, 0.8 Hz, 1H), 7.03 (t, J = 2.1 Hz, 1H), 6.92 (ddd, J = 8.3, 2.5, 0.8 Hz, 1H), 4.52 (s, 2H), 3.86 (s, 3H), 2.85 – 2.69 (m, 3H), 2.43 – 2.27 (m, 2H), 2.21 (ddd, J = 13.5, 11.2, 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.10 (s), 154.74 (s), 140.02 (s), 130.30 (s), 121.52 (s), 119.09 (s), 117.73 (s), 113.50 (s), 112.03 (s), 71.72 (s), 55.42 (s), 40.92 (s), 35.97 (s), 31.35 (s), 26.39 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₅H₁₅N₃ONa, 276.1112; found, 276.1107. IR (neat) 3547, 2924, 2853, 2236, 2186, 1639, 1491, 1417, 1262, 848 cm⁻¹.

4-amino-3'-chloro-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3j): Yield, 58% (59.7 mg); colorless solid; melting point, 155-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 2.9, 1.4 Hz, 1H), 7.43 – 7.36 (m, 3H), 4.57 (s, 2H), 2.75 (ddd, J = 22.7, 20.6, 8.6 Hz, 3H), 2.45 – 2.19 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.73 (s), 140.44 (s), 135.23 (s), 130.54 (s), 128.92 (s), 125.97 (s), 123.95 (s), 121.02 (s), 118.95 (s), 71.32 (s), 40.81 (s), 35.92 (s), 31.29 (s), 26.30 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₄H₁₂ClN₃Na, 280.0617; found, 280.0613. IR (neat) 3454, 3390, 2925, 2853, 2237, 2186, 1639, 1414, 1089, 876 cm⁻¹.

4-amino-3'-fluoro-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3k): Yield, 35% (33.7 mg); colorless solid; melting point, 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (td, J = 8.0, 6.1 Hz, 1H), 7.34 – 7.26 (m, 1H), 7.23 – 7.16 (m, 1H), 7.09 (td, J = 8.3, 1.9 Hz, 1H), 4.60 (s, 2H), 2.86 – 2.65 (m, 3H), 2.46 – 2.26 (m, 2H), 2.25 – 2.14 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.99 (d, J = 247.6 Hz), 154.88 (s), 140.94 (d, J = 7.2 Hz), 130.92 (d, J = 8.2 Hz), 121.42 (d, J = 3.2 Hz), 121.15 (s), 119.06 (s), 115.71 (d, J = 20.9 Hz), 113.07 (d, J = 23.4 Hz), 71.15 (s), 40.82 (s), 35.91 (s), 31.32 (s), 26.29 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₄H₁₂FN₃Na, 264.0912; found, 264.0907. IR (neat) 3439, 2925, 2852, 2342, 2240, 2184, 1640, 1563, 1413, 1099, 814 cm⁻¹.

4-amino-2'-methyl-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3l): Yield, 51% (48.4 mg); colorless solid; melting point, 135-137 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.25 (dd, J = 4.0, 2.4 Hz, 2H), 4.54 (s, 2H), 3.06 (dd, J = 15.6, 0.9 Hz, 1H), 2.81 – 2.71 (m, 1H), 2.69 (s, 3H), 2.66 – 2.60 (m, 1H), 2.48 – 2.41 (m, 1H), 2.40 – 2.36 (m, 1H), 2.36 – 2.31 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.93 (s), 136.64 (s), 135.23 (s), 133.13 (s), 128.58 (s), 126.71 (s), 125.05 (s), 121.23 (s), 99.98 (s), 71.23 (s), 38.48 (s), 34.32 (s), 30.35 (s), 26.15 (s), 21.22 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₅H₁₅N₃Na, 260.1163; found, 260.1158. IR (neat) 3453, 3364, 2925, 2854, 2232, 2185, 1639, 1413, 1194, 1021, 929 cm⁻¹.

4-amino-2'-chloro-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3m): Yield, 34% (35.0 mg); colorless solid; melting point, 154-156 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.47 (m, 1H), 7.42 (dt, J = 7.4, 3.2 Hz, 1H), 7.38 – 7.33 (m, 2H), 4.56 (s, 2H), 3.22 (d, J = 15.2 Hz, 1H), 2.84 – 2.67 (m, 2H), 2.57 – 2.43 (m, 2H), 2.32 (dt, J = 9.0, 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.85 (s), 134.11 (s), 133.55 (s), 132.22 (s), 130.07 (s), 127.62 (s), 127.40 (s), 120.16 (s), 119.18 (s), 70.96 (s), 39.30 (s), 33.26 (s), 29.40 (s), 25.99 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₄H₁₂ClN₃Na, 280.0617; found, 280.0611. IR (neat) 3442, 3363, 2924, 2854, 2234, 2185, 1640, 1414, 1040, 840 cm⁻¹.

4-amino-2'-fluoro-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3n): Yield, 16% (15.4 mg); colorless solid; melting point, 137-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (td, J = 7.9, 1.6 Hz, 1H), 7.44 – 7.36 (m, 1H), 7.26 – 7.12 (m, 2H), 4.56 (s, 2H), 2.96 – 2.82 (m, 2H), 2.80 – 2.68 (m, 1H), 2.49 – 2.40 (m, 1H), 2.40 – 2.30 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.59 (d, *J* = 248.0 Hz), 154.80 (s), 130.73 (d, *J* = 8.9 Hz), 127.45 (d, *J* = 3.3 Hz), 124.98 (d, *J* = 10.6 Hz), 124.85 (d, *J* = 3.5 Hz), 120.49 (s), 119.15 (s), 117.09 (d, *J* = 22.5 Hz), 71.11 (s), 38.32 (s), 33.41 (d, *J* = 2.7 Hz), 29.38 (d, *J* = 4.2 Hz), 26.07 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₄H₁₂FN₃Na, 264.0912; found, 264.0910. IR (neat) 3450, 3364, 2925, 2854, 2233, 2185, 1642, 1412, 1048, 837 cm⁻¹.

4-amino-3',4'-dimethoxy-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (30): Yield, 73% (82.7 mg); colorless solid; melting point, 165-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.03 – 6.99 (m, 2H), 6.91 – 6.88 (m, 1H), 4.52 (s, 2H), 3.94 (s, 3H), 3.92 (s, 3H), 2.85 – 2.70 (m, 3H), 2.41 – 2.29 (m, 2H), 2.24 – 2.18 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.71 (s), 149.29 (s), 149.08 (s), 130.80 (s), 121.76 (s), 119.08 (s), 117.62 (s), 111.24 (s), 108.95 (s), 71.72 (s), 56.07 (s), 56.02 (s), 40.46 (s), 36.07 (s), 31.62 (s), 26.44 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₆H₁₇N₃O₂Na, 306.1218; found, 306.1215. IR (neat) 3445, 2924, 2852, 2185, 1640, 1520, 1264, 1520, 1264, 1148, 1021, 807 cm⁻¹.

4-amino-1-(benzo[d][1,3]dioxol-5-yl)cyclohex-3-ene-1,3-dicarbonitrile (3p): Yield, 78% (83.4 mg); colorless solid; melting point, 199-201 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.98 (dd, J = 8.1, 2.1 Hz, 1H), 6.95 (d, J = 1.8 Hz, 1H), 6.85 (d, J = 8.1 Hz, 1H), 6.03 (s, 2H), 4.51 (s, 2H), 2.83 – 2.65 (m, 3H), 2.41 – 2.25 (m, 2H), 2.16 (ddd, J = 13.4, 11.0, 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.69 (s), 148.41 (s), 147.73 (s), 132.19 (s), 119.11 (s), 108.61 (s), 106.23 (s), 101.61 (s), 99.98 (s), 71.67 (s), 40.51 (s), 36.13 (s), 31.58 (s), 26.38 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₅H₁₃N₃O₂Na, 290.0905; found, 290.0902. IR (neat) 3451, 2924, 2853, 2238, 2183, 1640, 1562, 1414, 1248, 811 cm⁻¹.

4-amino-1-(pyridin-2-yl)cyclohex-3-ene-1,3-dicarbonitrile (3q): Yield, 83% (74.4 mg); colorless solid; melting point, 170-172 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.68 – 8.62 (m), 7.81 (ddd, J = 7.2, 5.3, 1.8 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.35 (ddd, J = 7.6, 4.9, 0.9 Hz, 1H), 4.50 (s, 1H), 4.19 (t, J = 7.0 Hz, 1H), 2.69 – 2.34 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 152.74 (s), 150.29 (s), 137.77 (s), 123.74 (s), 122.26 (s), 120.84 (s), 118.51 (s), 38.06 (s), 34.40 (s), 30.49 (s), 29.18 (s), 14.98 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₃H₁₂N₄Na, 247.0959; found, 247.0956. IR (neat) 3443, 2925, 2853, 2248, 2186, 1639, 1589, 1416, 1020, 785 cm⁻¹.

4-amino-1-(pyridin-3-yl)cyclohex-3-ene-1,3-dicarbonitrile (3r): Yield, 80% (71.7 mg); colorless solid; melting point, 174-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, J = 1.7 Hz, 1H), 8.67 (d, J = 2.3 Hz, 1H), 7.87 (ddd, J = 6.1, 1.9, 1.2 Hz, 1H), 7.47 – 7.37 (m, 1H), 4.58 (s, 2H), 2.90 – 2.73 (m, 4H), 2.71 – 2.49 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.56 (s), 149.85 (s), 148.53 (s), 134.91 (s), 133.86 (s), 123.94 (s), 120.49 (s), 118.75 (s), 71.29 (s), 39.50 (s), 35.78 (s), 31.23 (s), 26.17 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₃H₁₂N₄Na, 247.0959; found, 247.0955. IR (neat) 3440, 2924, 2853, 2247, 2185, 1691, 1639, 1420, 1192, 812 cm⁻¹.

4-amino-1-(naphthalen-2-yl)cyclohex-3-ene-1,3-dicarbonitrile (3s): Yield, 79% (86.4 mg); colorless solid; melting point, 220-222 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 8.6 Hz, 1H), 7.95 (t, J = 6.5 Hz, 1H), 7.93 – 7.88 (m, 1H), 7.67 (ddd, J = 8.6, 6.9, 1.5 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.52 – 7.46 (m, 2H), 4.56 (s, 2H), 3.41 – 3.30 (m, 1H), 2.89 – 2.75 (m, 2H), 2.73 – 2.62 (m, 1H), 2.51 (ddd, J = 13.1, 10.4, 5.3 Hz, H), 2.41 – 2.30 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.88 (s), 134.70 (s), 132.77 (s), 130.20 (s), 130.05 (s), 129.78 (s), 126.75 (s), 126.09 (s), 125.03 (s), 124.04 (s), 123.41 (s), 121.79 (s), 119.22 (s), 71.32 (s), 38.23 (s), 35.21 (s), 31.09 (s), 26.17 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₈H₁₅N₃Na, 296.1163; found, 296.1159. IR (neat) 3455, 2923, 2853, 2239, 2183, 1639, 1560, 1413, 1270, 802 cm⁻¹.

4-amino-4'-ethynyl-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3t): Yield, 54% (53.4 mg); colorless solid; melting point, 212-214 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 1.9 Hz, 1H), 7.56 – 7.55 (m, 1H), 7.48 – 7.46 (m, 1H), 7.46 – 7.44 (m, 1H), 4.53 (s, 2H), 3.15 (d, J = 1.3 Hz, 1H), 2.85 – 2.69 (m, 3H), 2.42 – 2.27 (m, 2H), 2.22 (ddd, J = 13.5, 11.0, 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.17 (s), 154.64 (s), 138.94 (s), 132.92 (s), 125.70 (s), 122.68 (s), 118.93 (s), 82.52 (s), 78.52 (s), 71.56 (s), 40.88 (s), 35.75 (s), 31.35 (s), 26.28 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₁₆H₁₃N₃Na, 270.1007; found, 270.1001. IR (neat) 3455, 3362, 3235, 2924, 2853, 2242, 2183, 1643, 1561, 1413, 1020, 831 cm⁻¹.

3-(2-fluorophenyl)pentane-1,3,5-tricarbonitrile (3n'): Yield, 36% (34.7 mg); colorless solid; melting point, 85-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 1H), 7.51 – 7.43 (m, 1H), 7.27 (dt, J = 7.6, 1.5 Hz, 1H), 7.22 – 7.13 (m, 1H), 2.70 – 2.59 (m, 2H), 2.56 – 2.37 (m, 4H), 2.26 – 2.15 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.84 (d, J = 246.9 Hz), 132.16 (d, J = 9.0 Hz), 130.13 (d, J = 3.2 Hz), 125.57 (d, J = 3.5 Hz), 119.88 (d, J = 10.3 Hz), 119.06 (s), 117.68 (d, J = 22.3 Hz), 117.65 (s),

46.69 (s), 46.65 (s), 33.57 (s), 33.52 (s), 14.04 (s). HR-MS (ESI-TOF) m/z $[M+Na]^+$ calcd. for C₁₄H₁₂FN₃Na, 264.0907; found 264.0900. IR (neat) 3434, 3333, 3186, 2256, 2270, 2170, 1639, 1400, 1259, 926 cm⁻¹.

4-amino-2,6-diphenyl-5,6,7,8-tetrahydroquinazoline-6-carbonitrile (5a): Yield, 52% (33.9 mg); colorless solid; melting point, 180-182 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.35 – 8.30 (m, 2H), 7.53 – 7.36 (m, 8H), 5.20 (s, 2H), 3.33 – 3.20 (m, 1H), 3.05 – 2.92 (m, 2H), 2.86 (d, J = 16.3 Hz, 1H), 2.48 – 2.30 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (s), 161.5 (s), 139.1 (s), 138.0 (s), 130.2 (s), 129.3 (s), 128.6 (s), 128.4 (s), 128.1 (s), 125.6 (s), 122.1 (s), 106.3 (s), 41.3 (s), 35.0 (s), 32.3 (s), 29.5 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₂₁H₁₈N₄Na, 349.1429; found, 349.1425. IR (neat) 3508, 3348, 3908, 2360, 2239, 1924. 1618, 1552, 1396, 1008 cm⁻¹.

4-amino-6-phenyl-2-(p-tolyl)-5,6,7,8-tetrahydroquinazoline-6-carbonitrile (5b): Yield, 49% (33.3 mg); colorless solid; melting point, 234-236 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.2 Hz, 2H), 7.55 – 7.50 (m, 2H), 7.47 – 7.41 (m, 2H), 7.38 (ddd, J = 7.4, 3.5, 1.2 Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 4.94 (s, 2H), 3.33 – 3.21 (m, 1H), 2.98 (ddd, J = 33.9, 24.9, 16.1 Hz, 3H), 2.51 – 2.33 (m, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (s), 161.5 (s), 161.3 (s), 140.3 (s), 139.1 (s), 135.2 (s), 129.3 (s), 129.2 (s), 128.6 (s), 127.9 (s), 125.6 (s), 122.0 (s), 105.9 (s), 41.3 (s), 35.1 (s), 32.4 (s), 29.5 (s), 21.5 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₂₂H₂₀N₄Na, 363.1585; found, 363.1581. IR (neat) 3499, 3332, 2985, 2341, 2293, 1916, 1612. 1456, 1263, 978 cm⁻¹.

4-amino-6-phenyl-2-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydroquinazoline-6carbonitrile (5c): Yield, 17% (13.4 mg); colorless solid; melting point, 219-221 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.2 Hz, 2H), 7.56

-7.51 (m, 2H), 7.48 -7.42 (m, 2H), 7.42 -7.36 (m, 1H), 4.98 (s, 2H), 3.36 -3.24 (m, 1H), 3.12 -2.91 (m, 3H), 2.54 -2.37 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.54 (d, *J* = 17.0 Hz), 160.81 (s), 141.24 (s), 138.91 (s), 131.57 (q, *J* = 23.0 Hz), 129.23 (s), 128.54 (s), 128.18 (s), 125.45 (s), 125.12 (q, *J* = 4.0 Hz), 124.65 (q, *J* = 258.0 Hz), 121.85 (s), 106.84 (s), 41.10 (s), 34.93 (s), 32.05 (s), 29.31 (s). HR-MS (ESI-TOF) m/z [M+Na]⁺ calcd. for C₂₂H₁₇F₃N₄Na, 417.1303; found, 417.12999. IR (neat) 3510, 3362, 2863, 2382, 2231. 1961. 1613, 1550, 1323, 962 cm⁻¹.

4-amino-2-(naphthalen-2-yl)-6-phenyl-5,6,7,8-tetrahydroquinazoline-6-

carbonitrile (5d): Yield, 41% (30.9 mg); colorless solid; melting point, 164-166 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.46 (dd, J = 8.6, 1.6 Hz, 1H), 8.04 – 7.96 (m, 1H), 7.95 – 7.82 (m, 2H), 7.59 – 7.50 (m, 4H), 7.49 – 7.37 (m, 3H), 5.11 (s, 2H), 3.40 – 3.26 (m, 1H), 3.13 – 3.00 (m, 2H), 2.92 (d, J = 16.3 Hz, 1H), 2.55 – 2.35 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (s), 161.6 (s), 161.4 (s), 139.0 (s), 135.2 (s), 134.4 (s), 133.2 (s), 129.2 (s), 129.0 (s), 128.5 (s), 128.0 (s), 127.9 (s), 127.6 (s), 126.7 (s), 126.0 (s), 125.5 (s), 125.2 (s), 121.9 (s), 106.2 (s), 41.1 (s), 34.9 (s), 32.2 (s), 29.5 (s). HR-MS (ESI-TOF) m/z [M+Na]+ calcd. for C₂₅H₂₀N₄Na, 399.1585; found, 399.1580. IR (neat) 3499, 3356, 3001, 2295, 2198, 1968, 1603, 1559, 1362, 949 cm⁻¹.

4. X-ray Structure Determinations

Diffraction data were collected on an Oxford Diffraction Supernova dual diffractometer equipped with an Oxford Cryostream 700 low-temperature apparatus. Cu K\ α radiation source ($\lambda = 1.54184$ Å) was used for the data collection. Single crystals were coated with Paratone-N oil and mounted on a Nylon loop for diffraction. The data reduction and cell refinement were processed using CrysAlisPro software.¹ Structures were solved by direct methods using the SHELXTL program packages.² All non-hydrogen atoms were refined anisotropically and hydrogen atoms were added geometrically. Crystal data and refinement details were given in Tables S1. Other refinement details and explanations were included in individual CIF files.

5. Crystallographic data of compounds

Compound	3a	5a (2158132)
formula	$C_{56}H_{52}N_{12}$	$C_{21}H_{18}N_4$
M	893.09	326.39
crystal system	triclinic	triclinic
space group	P-1	P-1
<i>a</i> , Å	11.5840(4)	6.1541(2)
<i>b</i> , Å	13.3019(4)	16.1600(8)
<i>c</i> , Å	16.7992(5)	18.3677(9)
α, deg	67.011(3)	68.234(5)
β , deg	80.092(3)	89.533(4)
γ, deg	77.442(3)	84.560(4)
<i>V</i> , Å ³	2315.02(14)	1688.08(13)
Ζ	2	4
μ , mm ⁻¹	0.617	0.614
independent data	9191	6364
refined parameters	614	493
$R_1^{b}, wR_2^{c} (\mathbf{I} \geq 2\sigma(\mathbf{I}))$	0.0387, 0.1094	0.0557, 0.1422
R_1, wR_2 (all data)	0.0488, 0.1153	0.0721, 0.1516
aT = 150(2) K, Cu Ka	a radiation ($\lambda = 1.54184$	Å). ${}^{b}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} $. ${}^{c}wR_{2} =$

Table S1. Crystallographic Data^{*a*} for compound 3a 5a.

^{*a*}T = 150(2) K, Cu Kα radiation ($\lambda = 1.54184$ Å). ^{*b*} $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$. { $\sum [w(F_o^2 - F_c^2)^2 / (F_o^2)^2]$ }.

6. ¹H NMR and ¹³C NMR spectra of compounds

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-5,6-dihydro-[1, 1'-biphenyl]-1,3(2H)-dicarbonitrile (3a):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-4'-methyl-5,6-d ihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3b):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-4'-methoxy-5,6 -dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3c):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-4'-(tert-butyl)-5,6-dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3d):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-5,6-dihydro-[1, 1':4',1''-terphenyl]-1,3(2H)-dicarbonitrile (3e):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-4'-bromo-5,6-d ihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3f):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-4'-chloro-5,6-di hydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3g):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-4'-fluoro-5,6-di hydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3h):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-3'-methoxy-5,6 -dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3i)

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-3'-chloro-5,6-d

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-3'-fluoro-5,6-di

hydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3k):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-2'-methyl-5,6-d

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-2'-chloro-5,6-di

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-2'-fluoro-5,6-di

hydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3n):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-3',4'-dimethoxy

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-1-(benzo[d][1,3]d

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-1-(pyridin-2-yl)

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-1-(pyridin-3-yl)

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-1-(naphthalen-

2-yl)cyclohex-3-ene-1,3-dicarbonitrile (3s):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-4'-ethynyl-5,6-

dihydro-[1,1'-biphenyl]-1,3(2H)-dicarbonitrile (3t):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 3-(2-fluorophenyl)penta

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-2,6-diphenyl-5,

6,7,8-tetrahydroquinazoline-6-carbonitrile (5a):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-6-phenyl-2-(p-t

olyl)-5,6,7,8-tetrahydroquinazoline-6-carbonitrile (5b):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-6-phenyl-2-(4-(

trifluoromethyl)phenyl)-5,6,7,8-tetrahydroquinazoline-6-carbonitrile (5c):

¹H NMR (400M, CDCl₃) and ¹³C (101M, CDCl₃) of 4-amino-2-(naphthalen-

2-yl)-6-phenyl-5,6,7,8-tetrahydroquinazoline-6-carbonitrile (5d)::

7. References

1. CrysAlisPro, Oxford Diffraction (Poland),2010.

2. a) G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structure.

University of Göttingen, Germany 1997. b) G. M. Sheldrick, *Acta Crystallogr.*,2015, C71, 3.