Supplementary Information

Achieving Stable Photoluminescence by Double

Thiacalix[4]arene-Capping: the Lanthanide-Oxo Cluster Core

Matters

Zixiu Lu,^{ab} Shujian Wang,^{ab} Guo-Ling Li,^{cd} Zhu Zhuo,^{cd} Haomiao Zhu,^{cd}

Wei Wang,^{cd*} You-Gui Huang,^{cde*} and Maochun Hong^{abd}

^a School of Rare Earth, University of Science and Technology of China, Ganzhou, China.

^b Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

^c CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China

^d Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China;

^e Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108

*Corresponding author: wangwei@fjirsm.ac.cn; yghuang@fjirsm.ac.cn

Contents

1. Supplementary Tables.

Table S1. Crystallographic Data and Structure Refinements for 1–5.

Table S2. Selected bond lengths [Å] for 2 and 4.

Table S3. Selected bond valence analysis for 2 and 4.

Table S4. Decay analysis data of 1, 2, and 4.

2. Supplementary Figures

Fig. S1 (a) FTIR spectra of 1–2; (b) FTIR spectra of 3–5.

Fig. S2 (a) Pyramid core $[Ln_5(\mu_5-OH)(\mu_3-OH)_4]$; (b) Pentanuclear structure of H₄TC4A-support {Ln₅} cluster.

Fig. S3 Calculated and experimental XRD patterns for 1–5. The purple curve is the calculated one obtained from single-crystal X-ray structure analysis.

Fig. S4 (a) Excitation spectra of 1; (b) Excitation spectra of 2; (c) Excitation spectra of 4; (d) the contrasting emission spectra of 2 and 4 in the solid state at room temperature.

Fig. S5 Decay curves of 1 (a); 2 (b); and 4 (c).

Fig. S6 SEM images of a piece of **2** crystals after soaking in water for two weeks (a) and (b); SEM images of a piece of **4** crystals after soaking in water for two weeks (c) and (d).

Fig. S7 (a) XRD patterns of 2 before and after soaking in water; (b) XRD patterns of4 before and after soaking in water.

Fig. S9 (a) The thermogravimetric (TG) analysis and differential scanning calorimetry (DSC) curve of **2**; (b) Powder XRD patterns of **2** at 100, 200, 250, and 330 °C; (c) The thermogravimetric (TG) analysis and differential scanning calorimetry (DSC) curve of **4**; (d) Powder XRD patterns of **4** at 25 and 60 °C.

	1	2	3
formula	${Eu_4(\mu_4-$	${Tb_4(\mu_4-OH)(TC4A)_2}$	$\{\mathrm{Gd}_9(\mu_5\text{-}\mathrm{OH})_2$
	OH)(TC4A) ₂	(DMF) ₆ (CH ₃ OH) ₃	(µ ₃ -OH) ₈
	(DMF) ₆ (CH ₃ OH) ₃	$(HCOO)Cl_2\}$	$(CH_3OH)_2(TC4A)_2$
	$(HCOO)Cl_2\}$	·0.66 CH ₃ OH	$(H_2O)_{24}Cl_9\}$
	·0.33CH ₃ OH		·3.36DMF
fw	2572.80	2618.24	3759.68
crystal system	Triclinic	Triclinic	Tetragonal
space group	P_1^-	P_{1}^{-}	P4/nnc
<i>a</i> , Å	12.2472(3)	12.2571(3)	13.3613(4)
b, Å	20.8833(5)	20.9533(5)	13.3613(4)
<i>c</i> , Å	22.7770(5)	22.9088(6)	46.1864(17)
α, deg	69.3320(10)	69.3000(10)	90
β , deg	83.0420(10)	83.0000(10)	90
γ, deg	86.5600(10)	86.5820(10)	90
<i>V</i> , Å ³	5409.5(2)	5461.9(2)	8245.4(6)
Ζ	2	2	2
D_c / g cm ⁻³	1.573	1.575	1.411
<i>Т,</i> К	200.00	200.00	200.00
<i>F</i> (000)	2582	2598	3380
reflections collected	114643	104934	325276
/ unique	/24852	/ 22162	/ 4793
R _{int}	0.0398	0.0364	0.0611
GOF on F^2	1.159	1.177	1.060
$R_1, wR_2 I > 2\sigma(I)^a$	0.0350, 0.0975	0.0351, 0.1001	0.0454, 0.1267
R_1 , wR_2 (all data)	0.0427, 0.1098	0.0415, 0.1120	0.0537, 0.1350
	4	5	
formula	${Tb_9(\mu_5-OH)_2}$	${Tb_9(\mu_5-OH)_2}$	
	(µ ₃ -OH) ₈ (OCH ₃)	(µ ₃ -OH) ₈ (OCH ₃)	
	$(TC4A)_2(H_2O)_{24}Cl_9\}$	$(TC4A)_2(H_2O)_{24}Cl_9\}$	
	·2.6DMF	·5.36DMF	

1. Supplementary Tables.

Table S1. Crystallographic Data and Structure Refinements for 1–5.

3703.03	3722.45
Tetragonal	Tetragonal
P4/nnc	P4/nnc
13.3479(4)	13.2526(4)
13.3479(4)	13.2526(4)
46.0809(18)	46.0114(19)
90	90
90	90
90	90
8210.1(6)	8081.0(6)
2	2
1.423	1.459
200.00	200.00
3398	3416
102383	322222
/4747	/4681
0.0566	0.0590
1.107	1.058
0.0628, 0.1582	0.0498, 0.1338
0.0787, 0.1731	0.0572, 0.1411
	3703.03 Tetragonal P4/nnc 13.3479(4) 13.3479(4) 46.0809(18) 90 90 90 90 8210.1(6) 2 1.423 200.00 3398 102383 /4747 0.0566 1.107 0.0628, 0.1582 0.0787, 0.1731

 $[a]R_1 = \Sigma ||F_o| - |F|| / \Sigma |F_o| \text{ and } wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2} \text{ for } F_o^2 > 2\sigma (F_o^2)$

Table 52. Selected bond lengths [A] for 2 and 4.						
	2					
Tb(1)-Cl(2)	2.7288(14)	Tb(3)-O(4)	2.368(3)			
Tb(1)-S(5)	2.9516(13)	Tb(3)-O(6)#1	2.376(3)			
Tb(1)-S(7)#2	2.9416(13)	Tb(3)-O(8)#1	2.373(3)			
Tb(1)-O(3)#2	2.374(3)	Tb(3)-O(10)	2.366(3)			
Tb(1)-O(7)	2.5438(2)	Tb(3)-O(12)	2.416(4)			
Tb(1)-O(11)#2	2.377(3)	Tb(3)-O(14)	2.4740(2)			
Tb(1)-O(13)	2.414(3)	Tb(3)-O(16)	2.376(4)			
Tb(1)-O(18)	2.378(3)	Tb(4)-Cl(1)	2.7474(15)			
Tb(1)-O(19)	2.422(4)	Tb(4)-S(1)#1	2.9330(12)			
Tb(2)-S(2)#2	2.9416(13)	Tb(4)-S(4)	2.9364(13)			
Tb(2)-S(3)	2.9551(13)	Tb(4)-O(1)	2.336(4)			
Tb(2)-O(3)	2.385(3)	Tb(4)-O(4)	2.410(3)			
Tb(2)-O(5)	2.343(4)	Tb(4)-O(6)	2.379(3)			
Tb(2)-O(7)	2.5582(2)	Tb(4)-O(8)#1	2.397(3)			
Tb(2)-O(11)#2	2.385(3)	Tb(4)-O(10)#1	2.389(3)			

Table S2. Selected bond lengths [Å] for 2 and 4.

Tb(2)-O(13)	2.371(3)	Tb(4)-O(14)	2.6205(2
Tb(2)-O(15)	2.398(4)	Tb(1)- $Tb(2)$	3.6144(3)
Tb(2)-O(18)#2	2.386(3)	Tb(1)-Tb(2)#2	3.6010(3)
Tb(3)-S(6)	2.9547(12)	Tb(3)-Tb(4)	3.5983(3)
Tb(3)-S(8)#1	2.9762(12)	Tb(3)-Tb(4)#1	3.6094(3)
	4		
Tb(1)-O(6)#2	2.426(6)	Tb(2)-O(2)#1	2.404(7)
Tb(1)-O(6)#3	2.426(6)	Tb(2)-O(3)	2.402(10)
Tb(1)-O(6)#4	2.426(6)	Tb(2)-O(4)	2.414(9)
Tb(1)-O(6)#1	2.426(6)	Tb(2)-O(5)	2.494(7)
Tb(1)-O(6)#5	2.426(6)	Tb(2)-O(6)	2.324(5)
Tb(1)-O(6)#6	2.426(6)	Tb(2)-O(6)#5	2.342(6)
Tb(1)-O(6)#7	2.426(6)	Tb(2)-O(7)	2.5554(7)
Tb(1)-O(6)	2.426(6)	Tb(1)-Tb(2)#1	3.7367(4)
Tb(1)-O(7)	2.874(10)	Tb(1)-Tb(2)	3.7366(4)
Tb(1)-O(7)#2	2.874(10)	Tb(2)-Tb(2)#5	3.6081(6)
Tb(2)-S(1)#1	2.965(2)	Tb(2)-Tb(2)#1	3.6081(6)
Tb(2)-O(2)	2.384(6)		

Symmetry transformations used to generate equivalent atoms:

2: #1 -x+2, -y+2, -z+1 #2 -x+1, -y+1, -z+2

4: #1 -y+3/2, X, z #2 -x+3/2, y, -z+1/2 #3 x, -y+3/2, -z+1/2 #4 -y+3/2, -x+3/2, -z+1/2 #5 y, x, -z+1/2 #6 y, x, z+1/2 #7 -x+3/2, -y+3/2, z

Table S3. Selected bond valence a	analysis for 2 and 4
-----------------------------------	------------------------------------

						2					
Atom	Cl2	S5	S 7	03	O7	011	013	018	019	—	Σcation
Tb1	0.44	0.30	0.31	0.38	0.24	0.37	0.34	0.37	0.33	—	3.09
Atom	S2	S 3	03	05	O7	011	013	015	018	—	Σcation
Tb2	0.31	0.30	0.37	0.41	0.23	0.36	0.38	0.35	0.36	—	3.08
Atom	S6	S 8	04	06	08	O10	012	O14	016	—	Σcation
Tb3	0.30	0.28	0.38	0.37	0.38	0.38	0.34	0.29	0.38	—	3.11
Atom	Cl1	S 1	S4	01	04	06	08	O10	014	—	Σcation
Tb3	0.42	0.32	0.32	0.42	0.34	0.37	0.35	0.36	0.19	—	3.10
Atom	Tb1	Tb1	Tb2	Tb	—	—	—	—	—	—	Σion
07	0.24	0.24	0.23	0.23	—	—	—	—	—	—	0.94
Atom	Tb1	Tb1	Tb2	Tb	—	—	—	—	—	—	Σion
O14	0.29	0.29	0.19	0.19	—	—	—	—	—	—	0.97
						4					
Atom	O7	O7	06	06	06	06	06	06	06	06	Σcation
Tb1	0.10	0.10	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	3.00
Atom	S 1	O2	O2	O3	O4	05	05	06	07	—	Σcation
Tb2	0.28	0.39	0.37	0.37	0.36	0.39	0.45	0.43	0.24	—	3.08
Atom	Tb1	Tb2	Tb2	—	—	—	—	—	—	_	Σion
O6(µ3)	0.45	0.43	0.34	—	—	—	—	—	—	_	1.22
Atom	Tb1	Tb2	Tb2	Tb2	Tb2	—	—	—	—	_	Σion
O5(µ5)	0.10	0.23	0.23	0.23	0.23	—	—	—	—	—	1.02

The bond valence was calculated by the equation: $S = \exp((R_0 - R)/b)$ where where S is

the experimental bond valence, *R* the observed bond length, and R_0 and *b* are fitted bond valence parameters. R_0 of Tb–O, Tb–S are 2.032, 2.510 and b = 0.37.

	Correspond	ing lifetime	Contributing	Average decay	
Compound	lifetime (ns)				time (ns) ^[a]
	$ au_1$	$ au_2$	A_1	A_2	$ au^*$
1	6.36*10 ⁴	2.59*10 ⁵	0.49	0.52	$5.22*10^4$
2	4.98*10 ⁵	$1.36*10^{6}$	0.07	1.04	$1.34^{*}10^{6}$
4	4.92*10 ⁵	$1.01*10^{6}$	0.03	0.75	$1.00*10^{6}$

Table S4. Decay analysis data of 1, 2, and 4.

[a] $\tau^* = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)$

Fig. S1 (a) FTIR spectra of 1–2; (b) FTIR spectra of 3–5.

Fig. S2 (a) Pyramid core $[Ln_5(\mu_5-O)(\mu_3-O)_4]$; (b) Pentanuclear structure of H₄TC4A-support {Ln₅} cluster.

Fig. S3 Calculated and experimental XRD patterns for 1–5. The purple curve is the calculated one obtained from single-crystal X-ray structure analysis.

Fig. S4 (a) Excitation spectra of 1; (b) Excitation spectra of 2; (c) Excitation spectra of 4; (d) the contrasting emission spectra of 2 and 4 in the solid state at room temperature.

Fig. S5 Decay curves of 1 (a), 2 (b), and 4 (c).

Fig. S6 SEM images of a piece of **2** crystals after soaking in water for two weeks (a) and (b); SEM images of a piece of **4** crystals after soaking in water for two weeks (c) and (d).

Fig. S7 (a) XRD patterns of 2 before and after soaking in water; (b) XRD patterns of4 before and after soaking in water.

Fig. S8 (a) Absorption spectra of H_4TC4A ligand; (b) Absorption spectra of 2.

Fig. S9 (a) The thermogravimetric (TG) analysis and differential scanning calorimetry (DSC) curve of **2**; (b) Powder XRD patterns of **2** at 100, 200, 250, and 300 °C; (c) The thermogravimetric (TG) analysis and differential scanning calorimetry (DSC) curve of **4**; (d) Powder XRD patterns of **4** at 25 and 60 °C.