## **Supplementary Material**

## Tongtong Zhu <sup>ab</sup>, Lei Cao <sup>ab</sup>, Xinyue Kou<sup>ab</sup>, Yulu Liu<sup>ab</sup>, Wen-Fei Dong <sup>ab</sup>, Mingfeng Ge <sup>b\*</sup>, and Li Li <sup>b\*</sup>

a. School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China;

b. CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163,
P. R. China;

\* Corresponding authors.

E-mail addresses: gemf@sibet.ac.cn, lil@sibet.ac.cn.



**Figure S1.** Other size TEM images  $(0.2 \ \mu m, 100 \ nm)$  of C-CQDs. It is obvious that the size of C-CQDs is mainly distributed below 10 nm, and combining the results of DLS can indicate that the size of C-CQDs is between 7 and 9 nm.



**Figure S2.** C 1s(A), N 1s(B), O 1s(C) XPS spectrum of C-CDs. The high-resolution C 1s spectrum (A) can be deconvoluted into two peaks at 284.76 and 286.03 eV, which corresponded to C=C/C-C and C=O bonds, respectively. The high-resolution N 1 s spectrum (B) shows two peaks at 399.13 and 401.42 eV, which indicated the presence of pyridinic N and amino N, respectively. The two main bands at 531.73 and 532.58 eV in the high-resolution O 1s spectrum (C) could be identified as C=O and C-OH, respectively.

**Table S1**. Analytical results for the detection of TCs in real samples (n = 5). Milk has been processed. C-CQDs were prepared one day earlier and used after 24h of placement. To reduce the error, detection was performed immediately after the addition of antibiotics.

| Tetracycline | Added        | Found        | Recovery (%) | RSD (%) |
|--------------|--------------|--------------|--------------|---------|
|              | $(\mu g/mL)$ | $(\mu g/mL)$ |              |         |
| CTC          | 2.00         | 1.97         | 98.5         | 0.88    |
|              | 5.00         | 4.99         | 99.8         | 0.94    |
|              | 10.00        | 10.21        | 102.1        | 0.83    |
| ОТС          | 2.00         | 2.04         | 100.5        | 1.02    |
|              | 5.00         | 5.04         | 100.8        | 0.94    |
|              | 10.00        | 9.98         | 99.8         | 0.88    |
| TET          | 2.00         | 1.94         | 97.0         | 0.82    |
|              | 5.00         | 4.91         | 98.2         | 0.87    |
|              | 10.00        | 9.97         | 99.7         | 0.97    |



**Figure S3.** The cell viabilities of HeLa cells under different concentrations of the C-CDs.



**Figure S4.** Laser scanning confocal microscope images of HeLa cells under 37°C and 4°C. It can be seen that the fluorescence intensity of C-CQDs in the cells decreased significantly, which indicated that the uptake of C-CQDs depends on cellular energy.