## Supporting information

A novel immuno-device based on specific binding of AuNPs supported CTAB with biotinylated antibody of Hyaluronic Acid toward early-stage recognition of biomarker: A bioanalytical assay in real samples using disposal biosensor technology

Ahmad Mobed <sup>abc1,</sup>, Fereshteh Kohansal <sup>c1</sup>, Sanam Dolati <sup>b\*</sup>, Mohammad Hasanzadeh <sup>c\*\*</sup>

<sup>a</sup> Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran

<sup>b</sup> Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz

University of Medical Sciences, Tabriz, Iran

° Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Corresponding authors

\* Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. <u>sanam.dolati@gmail.com</u>

\*\* Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran. <u>hasanzadehm@tbzmed.ac.ir</u>

<sup>1</sup>Co-first author



Fig. S1. Deposition of Au(CTAB) on ITO-PET by CHA technique, with the data's of:  $T_{equilibration} = 2 \text{ s}$ , Edc= -0.23 V, t<sub>interval</sub> = 0.1 s, trun=120 s.



Fig. S2. A) CVs of ITO-PET-AuNPs (CTAB) in different times of storage (1st, 24th and 48th hour), in the presence of  $K_4Fe(CN)_6$  / $K_3Fe(CN)_6$  0.5M containing KCl. B) Histogram of peak current in different storage times (per hour).



**Fig.S3. A)** CVs of ITO-PET-AuNPs (CTAB) in different times of storage (1st, 2nd, 3rd and 4th hours), in the presence of  $K_4Fe(CN)_6 / K_3Fe(CN)_6 0.5M$  containing KCl. **B)** Histogram of peak current in different storage times (per hour).









Fig. S4. A, D) SWV and CVs of engineered immunosensor reproducibility, in the presence of  $K_4Fe(CN)_6/K_3Fe(CN)_6$  0.5M containing KCl (0.1 M). B, C & E, F) Histogram of peak current height ( $\mu$ A) and potential (V) of SWV and CV, respectively. (RSD= 0.0269%, 0.006%, n=3, respectively).



**Fig. S5. A)** CVs of engineered immunosensor repeatability, in the presence of  $K_4Fe(CN)_6$ / $K_3Fe(CN)_6$  0.5M containing KCl. Data information: (T <sub>equilibration</sub>: 0 s, E<sub>begin</sub>: -1.0 V, E<sub>vertex1</sub>: 1.0 V, E<sub>vertex2</sub>: -1.0 V, E<sub>step</sub>: 0.01 V, scan rate: 0.1 V s<sup>-1</sup>). **B &C**) Histogram of peak current ( $\mu$ A) and potential (V) of versus number of electrodes.



**Fig. S6. A)** DPVs of the fabricated immunosensor in the presence of HA and three interfering biomarkers, PSA (60 ng L<sup>-1</sup>), CEA (75 ng L<sup>-1</sup>) and CA15-3 (70 ng L<sup>-1</sup>). DPV data information: (T equilibration: 2 s,  $E_{begin}$ : -1.0 V,  $E_{end}$ : 1.0 V,  $E_{step}$ : 0.1 V,  $E_{pulse}$ : 0.005 V, T <sub>pulse</sub>: 0.2 s, scan rate: 0.1 V s<sup>-1</sup>), in the presence of K<sub>4</sub>Fe(CN)<sub>6</sub> /K<sub>3</sub>Fe(CN)<sub>6</sub> 0.5M containing KCl . **B & C)** Histogram of peak current and related potential (V) versus type of interfering agents.



**Fig. S7. A)** CVs of AuNPs-CTAB in 0.01 M (Fe(CN)<sub>6</sub><sup>3/4</sup>–KCl) in different potential sweep rates (from inner to outer): 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 mV s<sup>-1</sup>. **B)** Plot of Ep versus log v for cyclic voltammograms depicted in (A) for

anodic peaks (b1) and cathodic peaks (b2). C-F) The dependency of anodic (C, E) and cathodic (D, F) peak currents on the potential sweep rate at lower values of 2-75 mV s<sup>-1</sup> (C, E) and on the square roots of sweep rate at higher values of 100-900 mV s<sup>-1</sup> (D, F).