Electronic Supplementary Information

for

Can shock-induced phonon up-pumping model relate to impact sensitivity of molecular crystals, polymorphs and cocrystals?

X. Bidault ^{1,a)} and S. Chaudhuri ^{1,2,b)}

¹ Department of Civil, Materials and Environmental Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States

² Applied Materials Division, Argonne National Laboratory, Lemont, IL 60439, United States

^{a)} Corresponding author: <u>xavbdlt@uic.edu</u>

^{b)} Electronic mail: <u>santc@uic.edu</u>

1. Evaluation of the "nitroaromatics" model for nitramines

The model of Deng *et al.* [1] was devised to predict shock sensitivity of nitroaromatics, using molecular descriptors (the numbers nC, nH, nN and nO of Carbon, Hydrogen, Nitrogen and Oxygen atoms, respectively, the Oxygen balance OB and the molecular weight MW) and a crystal descriptor (the bulk modulus). Definitions and formulas can be found in their paper. Their Equation (13) is the one used to predict h_{50} :

$$log_2h_{50} = 3.65\frac{OB.MW}{nH - MW} + 3.4\frac{\sqrt[3]{nO}}{nN.K} + 0.72\frac{nH.\sqrt[2]{K}}{nC} + 3.3$$

Presently, the bulk modulus is derived from DFT-D calculations, using Quantum Espresso, PBE-D2, PSlib 1.0.0 US PP with a cutoff of 90 Ry (more details can be found in Section II.A. of the manuscript). Using variable-cell relaxation at -2, 0 and +2 kbar, the bulk modulus is calculated as

$$K_T = -V_0 \frac{\partial P}{\partial V}$$

where V_0 is the volume at 0 kbar, and the differential term is approximated by the finite differences between values at -2 and +2 kbar. This method using PBE-D2 and PP was already shown to yield lattice parameters very close to values at ambient conditions [2] (see also Table SIII). The calculated bulk modulus is thus considered at ambient conditions. The results are reported in Table SI. The density and bulk modulus are indeed close to known ambient experimental data. While h_{50} is rather well predicted for aromatic nitramine (TATB and TNT), very large errors appear for non-aromatic nitramines. FOX-7 is found much less sensitive than TATB, and β -HMX even less, with its h_{50} higher than 800 cm. Going deeper and considering polymorphs, this model erroneously predicts β - and δ -HMX similarly insensitive, whereas both are experimentally sensitive, and δ -HMX even more than β -HMX [3]. Then, β - and ϵ -CL20 are predicted with sensitivity similar to TNT, whereas both are experimentally more than that, and β -CL20 more than ϵ -CL20 [4]. This model lacks of transferability and obviously needs a parameterization for nitramines.

Table SI. Sensitivity prediction from the "nitroaromatics" model applied to a few nitroaromatics and nitramines. The deviation (%*dev*) of density and bulk modulus are in reference to ambient experimental data found in [2]. The deviation (%*dev*) of h_{50} is in reference to experimental data reported in the main manuscript.

	MW	ОВ	Density	K (GPa)	log2(h ₅₀)	h₅₀ (cm)
			(%dev)	(%dev)		(%dev)
ТАТВ	268.15	-0.5370129	1.975	13.3	8.01	258
$(C_6H_6O_6N_6)$			(+1.9)	(+2.6)		(-47)
o-TNT	227.15	-0.7395994	1.65*	6.77*	6.29	78.4
$(C_7H_5O_6N_3)$						(+48/-23)
α-FOX-7	148.08	-0.2160994	1.915	13.1	9.42	685
$(C_2H_4O_4N_4)$			(+1.1)	(+4.0)		(+444)
β- ΗΜΧ	296.155	-0.2161030	1.911	15.3	9.79	886
$(C_4H_8O_8N_8)$			(+0.6)	(+3.9)		(+2585)
δ-ΗΜΧ	296.155	-0.2161030	1.777	14.7	9.69	827
$(C_4H_8O_8N_8)$						
ε-CL20	438.185	-0.1095428	1.997	11.5	6.20	73.5
$(C_6H_6O_{12}N_{12})$			(-2.3)	(-4.6)		(+315)
β-CL20	438.185	-0.1095428	1.959	11.1	6.16	71.4
$(C_6H_6O_{12}N_{12})$						(+449)
γ-CL20	438.185	-0.1095428	1.886	13.1	6.36	82.0
$(C_6H_6O_{12}N_{12})$						
2CL20:1HMX	586.25	-0.1364605	1.943	13.7	7.18	145
(C ₆ H ₆ O ₁₂ N ₁₂ +						
1/2 C ₄ H ₈ O ₈ N ₈)						

2. Phonon density of states of β -HMX from DFT-D – Issues when using only the Gamma point

The method to calculate the vibrational density of states (vDOS) can be found in Section II.B. of the manuscript and in Ref. [2]. The β -HMX lattice parameters are first optimized at zero pressure using either Quantum Espresso (single cell and 3x2x3 off-grid k-points) or CP2K (2x1x2 supercell and the Gamma point), using various pseudo potentials (PP) and even one all-electron (AE) simulation. The results are reported in Table SII. To determine their phonon density of states, the supercell method as implemented in Phonopy is used on 2x1x2 supercells, large enough for a single k-point. For every DFT-D combination, the respective vDOS are displayed in Fig. S1. It shows evidence that only the combination using a single cell with the Gamma point (red dotted curve) results in a vDOS which strongly differs from the other combinations, especially in the low-frequency range and with significant negative frequencies. This choice could fit high-throughput considerations, concerning fast calculations, but the lattice/intermolecular vibrations are poorly described. We consider this an issue when quantifying shock sensitivity based on an up-pumping scheme from the phonon bath. For this reason, we avoided in the present study this less accurate and cheap combination.

Table SII. β -HMX unit-cell from variable-cell relaxation using different DFT-D methods. The *italic* value under every lattice parameter is the percentage deviation *%dev* from the experimental data at 303 K taken from ref. CCDC 792930. QE uses a single cell with a mesh of 3x2x3 off-grid k-points. CP2K uses a 2x1x2 supercell and the Gamma point. NLCC is used for all PP.

						a (Å)	b (Å)	c (Å)	_	β (°)	V (Å ³)
Exp.						6.526	11.037	7.364	_	102.67	517.45
QE	PBE-D2	PP	PSlib1.0.0	90 Ry	3x2x3 (off-grid)	6.560	10.856	7.404		102.60	514.53
%dev					-	+0.5	-1.6	+0.5		-0.1	-0.6
QE	PBE-D2	PP	PseudoDojo Std	120 Ry	3x2x3 (off-grid)	6.547	10.905	7.224	-	102.56	512.35
%dev						+0.3	-1.2	-1.9		-0.1	-1.0
QE	PBE-D2	PP	ONCV 1.2	400 Ry	3x2x3 (off-grid)	6.551	10.907	7.239	_	102.62	512.22
%dev				-		+0.4	-1.2	-1.7		-0.0	-1.0
CP2K	PBE-D2	PP	GTH-mTZVP	1500 Ry	Superc. 2x1x2 + Gamma	6.556	10.915	7.366	-	102.67	514.30
%dev						+0.5	-1.1	+0.0		0.0	-0.6
CP2K	PBE-D3(BJ)	AE	AE 6-311G**	1500 Ry	Superc. 2x1x2 + Gamma	6.548	10.900	7.291	_	102.90	507.25
%dev						+0.3	-1.2	-1.0		+0.2	-2.0

Fig. S1. Phonon density of states of β -HMX using various DFT-D combinations, from the structures optimized in Table SII. The quick calculations using a single cell and only the Gamma point for the phonon calculations is also the less accurate (red dotted curve). The other combinations agree very well with each other.

3. Additional QE and PHONOPY simulation parameters

Table SIII. Monkhorst-Pack parameters for variable-cell optimization of the unit cell, supercell size for phonon calculations, and resulting phonon bath extent ω_{max} from phonon analysis (including highest X-NO₂ twisting modes).

	Monkhorst- Pack off-grid k- point mesh	Supercell (unit cell replication)	Molecules in the supercell	Atom total	Irreducible representations	ω_{max} (cm ⁻¹)
PETN-I	2x2x3	2x2x2	16	464	44	125
BTF	3x1x3	2x1x2	16	288	108	153
β-ΗΜΧ	3x2x3	2x1x2	8	224	84	176
δ-ΗΜΧ	3x3x1	2x2x1	24	672	168	152
α-NTO	4x3x2	3x2x1	48	528	264	171
HNB	2x3x3	2x2x2	32	768	72	166
Tetryl	2x3x2	2x2x2	32	800	150	204
HNAB	2x4x2	1x3x1	12	432	432	213
HNS	1x4x2	1x3x1	12	456	228	217
DIPAM	3x2x1	2x1x1	8	288	216	227
TNB	2x1x2	2x1x2	64	1152	216	152
MATB	4x3x2	3x2x1	24	480	120	161
DATB	3x4x2	2x3x1	12	264	132	181
ТАТВ	2x2x3	2x2x2	16	384	144	133
α-FOX-7	3x3x2	2x2x1	16	224	84	172
α-CL20	3x2x1	2x1x1	16	576	216	153
β-CL20	2x2x2	2x2x2	16	576	216	158
γ-CL20	2x2x2	2x2x2	16	576	216	199
ε-CL20	2x2x2	2x2x2	16	576	216	178
MTNP	2x3x3	1x2x2	16	288	108	173
2CL20:1HMX	1x2x2	1x2x2	16 + 8	800	300	166
1CL20:1MTNP	3x2x2	2x1x1	4 + 4	216	324	190

4. Comparison of the theoretical phonon vDOS to experimental INS spectra

Fig. S2 compares our calculated vDOS of β -HMX, α -NTO, TATB and α -FOX-7 to experimental spectra of inelastic neutron scattering (INS) performed at 20 K [5][6]. Peak positions agree within 3%. The largest relative deviation (8%) occurs at the upper part of the phonon bath of α -FOX-7 (170 cm⁻¹), which is good for this challenging low-frequency range [7]. Our all-electron calculations improve this range for α -FOX-7 (blue curve in Fig. S2). Even though strong similitudes can be seen in the low-frequency range, we recall that a straight comparison of shape and intensity would require calculating neutron instead of phonon spectra.

5. Optimized lattice parameters from DFT-D

Table SIV reports the results of the variable-cell relaxation as performed in section II.A. of the manuscript. The resulting structures agree very well with data at ambient conditions.

Name			(8)		(8)		(0)	0 (0)	(0)	3	<i>((</i> 3)
Grp. Sym.			a (A)	b (A)	c (A)		α (*)	β(°)	γ(*)	V (A*)	ρ (g/cm²)
	Evp 303K	-	6 5 2 6	11 027	7 364			102.67	<u> </u>	517 / 5	1 001
			6 560	10.856	7.304			102.07		517.45	1.901
792930	Y dev		+0.5	-1.6	+0 5			-0.1		-0.6	+0.6
δ_ΗΜΧ	Exp 295K	-	7 711	1.0	32 553			0.1	120.00	1676.27	1 760
PG			7.620		32.555				120.00	1661 15	1.700
1225493	r bL-bz % dev		-1 1		+1 2				0.0	-0.9	+0.9
a-EOX7	Fxp 298K	-	6 934	6 6 2 3	11 312			90.06	0.0	519.47	1 893
P2./n	PRF-D2		7 005	6 484	11 309			90.00		513.47	1 915
616838	% dev		+1 0	-21	-0.0			+1.0		-1 1	+1 1
DETN-I	Evp 295K	-	9 386	2.1	6 715			71.0		591 57	1 774
P_{-12} / n			0 300		6 669					588.03	1 785
1231269	r bL-bz % dev		9.390 +0.0		-0.7					-0.6	+0.6
	Evn Amb	-	8 852	12 556	13 386			106.82		1424 15	2 044
P2./n	PRF-D2		8 939	12.550	13 478			106.02		1457 52	1 997
117779	% dev		+1.0	+0.8	+0.3			-0.3		+2.3	-2.3
B-CI 20	Fxp 293K	-	9.676	13,006	11 649			0.0		1465.98	1 985
Pb2₁/a	PBE-D2		9.682	13.301	11.553					1485.98	1.959
117777	% dev		+0.1	+2.3	-0.8					+1.4	-1.4
v-CL20	Exp. 293K	-	13.231	8.170	14.876			109.17		1518.89	1.916
P2₁/n	PBE-D2		13.257	8.303	14.816			108.88		1543.23	1.886
117778	% dev		+0.2	+1.6	-0.4			-0.3		+1.6	-1.6
α-CL20	Exp. 293K	-	9.485	13.225	23.673					2969.52	1.960
Pbca	PBE-D2		9.400	13.467	23.756					3007.10	1.936
117776	% dev		-0.9	+1.8	+0.3					+1.3	-1.3
2CL20:	Exp. 303K	-	16.346	9.936	12.142			99.23		1946.42	2.001
1HMX	PBE-D2		16.440	9.996	12.376			99.89		2003.69	1.943
P2₁/n 792930	% dev		+0.6	+0.6	+1.9			+0.7		+2.9	-2.9
BTF	Exp. 295K	-	6.923	19.516	6.518					880.64	1.901
Pna2₁	PBE-D2		7.010	19.700	6.575					908.04	1.844
1118341	% dev		+1.3	+0.9	+0.9					+3.1	+3.0
α-NTO	Exp. 293K	-	5.123	10.314	17.998		106.61	97.81	90.13	902.06	1.916
ΡĪ	PBE-D2		5.148	10.422	17.612		107.26	97.67	90.11	893.48	1.934
286331	% dev		+0.5	+1.0	-2.1		+0.6	-0.1	-0.0	-0.9	+0.9
TNB	Exp. 295K	-	9.78	26.94	12.82					3377.73	1.676
Pbca	PBE-D2		9.571	27.067	12.693					3288.08	1.722
1272828	% dev	-	-2.1	+0.5	-1.0	. .				-2.7	+2.7
ТАТВ	Exp. 295K	-	9.010	9.028	6.812	-	108.58	91.82	119.97	442.52	1.938
ΡĪ	PBE-D2		9.096	9.109	6.606		109.71	91.31	119.94	434.08	1.975
1266837	% dev		+1.0	+0.9	-3.0		+1.0	+0.6	+0.0	-1.9	+1.9

TABLE SIV. PBE-D2 optimizations at 0 K and 0 bar, using PSlib 1.0.0 US pseudopotential and 90 Ry energy cutoff.

Name										_	
Grp. Sym.			a (Å)	b (Å)	c (Å)		α (°)	β (°)	γ (°)	V (Å ³)	ρ (g/cm³)
CCDC ref.		_				_					
MATB	Exp. 295K		6.137	9.217	15.323			99.67		854.43	1.773
P2 ₁ /n	PBE-D2		6.067	9.134	15.451			99.92		843.40	1.797
1272844	% dev		-1.1	-0.9	+0.8			+0.2		-1.3	+1.3
DATB	Exp. 223K	_	7.309	5.169	11.583			95.22		435.79	1.853
Рс	PBE-D2		7.332	5.196	11.497			93.88		437.00	1.848
	% dev		+0.3	+0.5	-0.7			-1.4		+0.3	-0.3
DIPAM	Exp. 113K	_	7.340	11.624	18.734					1598.34	1.825
P2 ₁ 2 ₁ 2 ₁	PBE-D2		7.387	11.813	18.824					1642.68	1.776
822227	% dev		+0.6	+1.6	+0.5					+2.8	-2.8
HNB	Exp. 295K	_	13.220	9.130	9.680	_		95.55		1162.98	1.988
C2/c	PBE-D2		13.267	9.009	9.768			96.32		1160.30	1.993
1177301	% dev		+0.4	-1.3	+0.9			+0.8		-0.2	+0.2
HNAB	Exp. 298K	_	15.401	5.524	22.118			110.34		1764.13	1.703
P21	PBE-D2		15.078	5.747	21.622			110.45		1755.49	1.711
268091	% dev		-2.1	+4.0	-2.2			+0.1		-0.5	+0.5
HNS	Exp. 295K	_	22.326	5.571	14.667			110.04		1713.68	1.745
P21/c	PBE-D2		21.646	5.621	15.036			112.43		1691.03	1.768
1168120	% dev		-3.0	+0.9	+2.5			+2.2		-1.3	+1.3
Tetryl	Exp. 295K	_	14.129	7.374	10.614			95.07		1101.52	1.731
P21/c	PBE-D2		14.408	7.234	10.492			96.24		1087.00	1.755
1214794	% dev	_	+1.9	-1.9	-1.1	_		+1.2		-1.3	+1.3
MTNP	Exp. 293K		11.921	8.339	8.476					842.61	1.711
Pna2 ₁	PBE-D2		11.797	8.267	8.480					826.98	1.744
1056644	% dev	_	-1.0	-0.9	+0.0	_				-1.9	+1.9
1CL20:	Exp. 293K	_	8.351	11.430	11.940			98.66		1126.73	1.932
1MTNP	PBE-D2		8.345	11.450	12.012			98.66		1134.61	1.918
P2 ₁ 1056638	% dev		-0.1	+0.2	+0.6			-0.0		+0.7	-0.7

TABLE SIV - cont.

References

- [1] Q. Deng *et al.*, "Probing impact of molecular structure on mechanical property and sensitivity of energetic materials by machine learning methods," *Chemometrics and Intelligent Laboratory Systems*, p. 104331, Apr. 2021, doi: 10.1016/j.chemolab.2021.104331.
- [2] X. Bidault and S. Chaudhuri, "Improved predictions of thermomechanical properties of molecular crystals from energy and dispersion corrected DFT," J. Chem. Phys., vol. 154, no. 16, p. 164105, Apr. 2021, doi: 10.1063/5.0041511.
- [3] B. W. ASAY, B. F. HENSON, L. B. SMILOWITZ, and P. M. DICKSON, "On the Difference in Impact Sensitivity of Beta and Delta HMX," *Energetic Materials*, Jun. 2010, doi: 10.1080/713770434.
- [4] S. Zeman, M. JUNGOVÁ, and Q.-L. YAN, "Impact Sensitivity in Respect of the Crystal Lattice Free Volume and the Characteristics of Plasticity of Some Nitramine Explosives," Dec. 25, 2015. http://www.energeticmaterials.org.cn/publish_article/2015/12/2015111.htm (accessed Apr. 13, 2021).
- [5] A. A. L. Michalchuk *et al.*, "Predicting the reactivity of energetic materials: an ab initio multi-phonon approach," *Journal of Materials Chemistry A*, vol. 7, no. 33, pp. 19539–19553, 2019, doi: 10.1039/C9TA06209B.
- [6] A. A. L. Michalchuk, S. Rudić, C. R. Pulham, and C. A. Morrison, "Predicting the impact sensitivity of a polymorphic high explosive: the curious case of FOX-7," *Chem. Commun.*, vol. 57, no. 85, pp. 11213–11216, Oct. 2021, doi: 10.1039/D1CC03906G.

[7] P. A. Banks, Z. Song, and M. T. Ruggiero, "Assessing the Performance of Density Functional Theory Methods on the Prediction of Low-Frequency Vibrational Spectra," J Infrared Milli Terahz Waves, Jun. 2020, doi: 10.1007/s10762-020-00700-7.