ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Synthesis, Characterization and *in vitro* anti-Cholinesterase Screening of Novel Indole Amines

Humaira Yasmeen Gondal^a, Sobia Tariq^a, Shahzaib Akhter^a, Abdul Rauf Raza^{*a}, Muhammad Fayyaz ur Rehman^{*a}, and Syeda Laila Rubab^b

The present study involved targeted synthesis and characterization of novel indole amines with anti-acetylcholinesterase profiling. A series of proposed indole amines was virtually screened against human acetylcholinesterase. A few indole amines (26, 30 and 31) showing strong enzyme binding in the *in silico* studies, were synthesized in the laboratory and characterized with spectroscopic (IR, UV, NMR, SC XRD) and spectrometric (EIMS, HR EIMS) methods. The indole amine 26 was crystallized from EtOH and analyzed with SC-XRD. These ligands were found to interact with PAS site in the enzyme and their binding may disrupt the activity. The *in vitro* acetylcholinesterase inhibition studies exhibits that indole amines (30 and 31) show comparable IC₅₀ values (4.28 and 4.66 μ *M*, respectively) to galantamine (4.15 μ *M*) and may be studied further as cost-effective acetylcholinesterase inhibitors.

Keywords: Indoles, Indole amines, Anti-cholinesterase potential, Alzheimer's disease, Inhibitory action

^{a.} Institute of Chemistry, Ibn e Sina Block, University of Sargodha, Sargodha-40100 (Pakistan) E-Mail: rauf.raza@uos.edu.pk (A.R.R); humaira.yasmeen@uos.edu.pk (H.Y.G.); <u>sobiatariq66@gmail.com</u> (S.T.); <u>shahzaibakhter740@gmail.com</u> (S.A.) and muhammad.fayyaz@uos.edu.pk (M.F.R.).

 ^{b.} Department of Chemistry, Division of Science and Technology, University of Education, Lahore-54770 (Pakistan) E-Mail: laila.rubab@ue.edu.pk (S.L.R).
 * Corresponding author: rauf.raza@uos.edu.pk (A.R.R),

muhammad.fayyaz@uos.edu.pk (M.F.R); Tel.: +92-48-9230-546 (A.R.R. and M.F.R) †Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

Table S1: Binding energies (kcal/mol units), dissociation constant (nanomolar units) and active sites of targeted indole amines (19-34) through in silico study.

Indole Amine	B.E.	D.C.	Active Site
25	-13.37	0.158	Tyr72, Asp74, Trp86, Gly121, Trp286, Leu289, Glu292, Val294, Phe295, Phe297, Tyr337, Phe338, Tyr341
26	-12.81	0.4	Tyr72, Asp74, Gly121, Gly122, Tyr124, Trp286, Leu289, Glu292, Ser293, Val294, Phe295, Arg296, Tyr337, Phe338, Tyr341
24	-12.43	0.769	Tyr72, Asp74, Gly121, Ser125, Trp286, Leu289, Glu292, Ser293, Val294, Phe295, Phe297, Tyr337, Phe338, Tyr341
22	-12.39	0.83	Tyr72, Asp74, Leu76, Tyr124, Trp286, Glu292, Ser293, Val294, Phe295, Phe297, Phe338, Tyr341
21	-12.34	0.903	Tyr72, Asp74, Trp86, Gly121, Gly122, Tyr124, Ser125, Trp286, His287, Leu289, Gln291, Glu292, Ser293, Val294, Phe295, Arg296, Phe297, Tyr337, Phe338, Tyr341
20	-12.19	1.17	(Tyr72, Asp74, Thr75, Leu76, Tyr77, Thr83, Tyr124, Ser125, Trp286, Leu289, Gln291, Glu292, Ser293, Val294, Phe295, Arg296, Phe297, Tyr337, Phe338, Tyr341, Gly342
19	-11.67	2,81	Tyr72, Asp74, Gly121, Gly122, Tyr124, Ser125, Trp286, His287, Leu289, Gln291, Glu292, Ser293, Val294, Phe295, Arg296, Phe297, Tyr337, Phe338, Tyr341
23	-11.67	2.81	Tyr72, Asp74, Gly121, Gly122, Tyr124, Ser125, Trp286, His287, Leu289, Gln291, Glu292, Ser293, Val294, Phe295, Arg296, Phe297, Tyr337, Phe338, Tyr341
33	-10.3	28.02	Tyr72, Asp74, Thr75, Leu76, Tyr77, Thr83, Trp286, Leu289, Ser293, Val294, Phe295, Arg296, Phe297, Tyr337, Phe338, Tyr341
30	-10.21	32.58	Tyr72, Asp74, Trp86, Gly121, Gly122, Ser125, Ser203, Phe295, Phe297, Tyr337, Phe338, Tyr341, His447
34	-9.93	52.58	Tyr72, Asp74, Gly121, Gly122, Ser203, Trp286, Ser293, Val294, Phe295, Arg296, Phe297, Asp333, Tyr337, Phe338, Tyr341, His447
29	-9.85	60.13	Tyr72, Asp74, Thr83, Trp86, Gly121, Gly122, Ser125, Ser203, Ala204, Trp236, Trp286, Leu289, Ser293, Val294, Phe295, Arg296, Phe297, Tyr337, Phe338, Tyr341, His447
32	-9.57	97.32	Gln71, Tyr72, Asp74, Trp86, Asn87, Gly120, Gly121, Gly122, Ser125, Gly126, Leu130, Ser203, Trp286, Leu289, Ser293, Val294, Phe295, Arg296, Phe297, Tyr337, Phe338, Tyr341, His447, Gly448
28	-9.14	198.53	(Chain B) Tyr72, Asp74, Thr75, Leu76, Trp86, Gly120, Gly121, Gly122, Ser125, Glu202, Trp286, Val294, Phe295, Arg296, Phe297, Tyr337, Phe338, Tyr341, His447, Gly448
27	-8.72	405.14	(Chain B)Tyr72, Asp74, Gly121, Gly122, Tyr124, Ser125, Trp286, Ser293, Val294, Phe295, Arg296, Phe297, Tyr337, Phe338, Tyr341

Table S2: Selected crystallographic data of N-phenyl (4,5,6-trimethoxy-2,3-diphenyl-1H-indol-7-yl) methanimine.

Important crystallographic parameters of imine						
$C_{30}H_{26}N_2O_3$						
462.53						
Triclinic						
6.7431(13), 10.7860(19), 17.370(3)						
94.936(10), 92.093(11), 98.257(11)						
1244.1(4)						
2						
1.235						
0.080						
488						

Journal Name

Bond Angles (º)		Bond Distances (Å)	
C ²⁰ -O ¹ -C ²¹	117.52	O ¹ -C ²⁰	1.3648
C ⁹ -C ¹⁴ -C ¹³	121.25	O ¹ -C ²¹	1.4394
C ⁷ -N ¹ -C ¹⁶	108.17	C ¹⁷ -C ¹⁸	1.3959
C ²⁴ -N ² -C ²⁵	116.44	C ¹⁷ -C ¹⁸	1.3959
N ¹ -C ¹⁶ -C ¹⁷	127.55	N ¹ -C ⁷	1.3936
C ⁷ -N ¹ -H ^{1A}	126.00	N ¹ -C ¹⁶	1.3684
N ¹ -C ¹⁶ -C ¹⁵	108.51	N ² -C ²⁴	1.2981
C ¹⁵ -C ¹⁶ -C ¹⁷	123.92	N ² -C ²⁵	1.4234
C ¹⁷ -C ¹⁸ -C ¹⁹	122.42	N ¹ -H ^{1A}	0.8600
C ⁵ -C ⁶ -C ⁷	119.63	C ²⁵ -C ²⁶	1.3746

 Table S3: Selected crystallographic data of 4,5,6-trimethoxy-2,3-diphenyl-7-phenylaminomethyl-1H-indole.

Important crystallographic parameters of indole amine						
Molecular Formula	C ₃₀ H ₂₈ N ₂ O ₃					
Molecular mass [amu]	464.54					
Crystal System	Monoclinic					
a, b, c [Å]	9.5472(6), 11.8512(8), 21.3627(17)					
α, β, γ [⁰]	90, 94.605(4), S90					
Volume of crystal [Å ³]	2409.3(3)					
Z	4					
Density of crystal (calc.) [g/cm ³]	1.281					
μ (MoKa) [/mm]	0.083					
F (000)	984					

Bond Angles ()	Bond Distances	(Å)
C ²⁰ -O ¹ -C ²¹	117.52	O ¹ -C ²⁰	1.3802
C ⁹ -C ¹⁴ -C ¹³	121.25	O ¹ -C ²¹	1.4258
C ⁷ -N ¹ -C ¹⁶	108.17	C ¹⁷ -C ¹⁸	1.3781
C ²⁴ -N ² -C ²⁵	116.44	C15-C16	1.4031
N ¹ -C ¹⁶ -C ¹⁷	127.55	N ¹ -C ⁷	1.3904
C ⁷ -N ¹ -H ^{1A}	126.00	N ¹ -C ¹⁶	1.3634
N ¹ -C ¹⁶ -C ¹⁵	108.51	N ² -C ²⁴	1.4416
C ¹⁵ -C ¹⁶ -C ¹⁷	123.92	N ² -C ²⁵	1.4198
C ¹⁷ -C ¹⁸ -C ¹⁹	122.42	N ¹ -H ^{1A}	0.8800
C ⁵ -C ⁶ -C ⁷	119.63	N ² -H ^{2A}	1.2100

Table S4: ADMET parameters of the 2,3-diphenylindole amines.

	Indole amines	25	24	21	20			
Physiochemical Properties								
MW*		509.55	509.55	479.53	479.53			
NRB [^]		9	9	8	8			
HBA+		5	5	4	4			
HBD ⁺⁺		2	2	2	2			
LogP		5.20	5.17	5.16	5.17			
TPSA ¹		101.33	101.33	92.10	92.10			

J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

Λ	Ĺ	c	۰	T	Ľ	C	Ľ.	E
r	ß	Ľ	Δ.	ι.	U,	L	_	_

Journal Name

MR ²		151.26	151.26	144.77	144.77					
Log S	-7.06	-7.06	-6.99	-6.99						
		Poorly soluble	Poorly soluble	Poorly soluble	Poorly					
	Adsor	ption			soluple					
Water solubility (log mol/L)		-3.479	-3.471	-3.967	-3.944					
Caco2 permeability (log Papp in 10 ⁻⁶ cm/s)		0.621	0.613	0.568	0.554					
Intestinal absorption (human) (% Absorbed)		100	100	91.784	93.464					
Skin Permeability (log Kp)		-2.735	-2.735	-2.735	-2.735					
P-glycoprotein substrate		Yes	Yes	Yes	Yes					
P-glycoprotein I inhibitor		Yes	Yes	Yes	Yes					
P-glycoprotein II inhibitor		Yes	Yes	Yes	Yes					
	Distr	ibution								
VDss ^a (human) (log L/kg)		-1.585	-1.587	-1.487	-1.491					
Fraction unbound (human)		0.312	0.314	0.283	0.285					
BBB ^o permeability (log BB)		-0.1 (NO)	-0.117 (NO)	0.037 (NO)	0.02 (NO)					
Civis' permeability (log PS)	Meta	abolism	-1.919	-1./1	-1.099					
CYP2D6 substrate		No	No	No	No					
CYP3A4 substrate		Yes	Yes	Yes	Yes					
CYP1A2 inhibitor		Yes	Yes	Yes	Yes					
CYP2C19 inhibitor		Yes	Yes	Yes	Yes					
CYP2C9 inhibitor		Yes	Yes	Yes	Yes					
CYP2D6 inhibitor		No	No	No	No					
CYP3A4 inhibitor		No	No	No	No					
	Exc	retion								
Total Clearance (log ml/min/kg)		0.62	0.627	0.68	0.688					
Renal OCT2 substrate	No	Νο	No	No						
	То	xicity								
AMES toxicity	Yes	Yes	Yes	Yes						
Max. tolerated dose (human) (log mg/kg/day)	0.436	0.438	0.474	0.47	5					
hERG l inhibitor	No	No	No	No						
hERG II inhibitor	Yes	Yes	Yes							
Oral Rat Acute Toxicity (LD50) (mol/kg)	2.933	3.145	3.146							
Oral Rat Chronic Toxicity (LOAEL) (log	1.582	1.364	1.805	1.6						
mg/kg_bw/day)										
Hepatotoxicity	Yes	Yes	Yes	Yes						
Skin Sensitisation	No	No	No	No						
T.Pyriformis toxicity (log ug/L)	0.285	0.285	0.285	0.28	5					
Minnow toxicity (log mM)	-3.944	-3.745	-2.877	-2.69	94					

*Molecular weight (g/mol), ^Non-rotatable bond, *Hydrogen bond acceptor, **Hydrogen bond doner, ¹Topological Polar Surface Area (Å²), ²Molar refractivity, ^aVolume of Distribution, ^bBBB (Blood-brain Barrier), ^cCNS (Central Nervous System)

Figure S1: Binding mode with AChE (4M0E). A: 3D interaction of key residues of 4M0E, where pi-pi stacking (blue dotted line), hydrogen bond (yellow dotted line) and pi-cation (green dotted line) are represented. B: 2D interaction of key residues of 4M0E, where hydrophobic interactions (red lines) and hydrogen bond (green lines) are represented.

Figure S2: Binding mode with AChE (4M0E). A: 3D interaction of key residues of 4M0E, where pi-pi stacking (blue dotted line), hydrogen bond (yellow dotted line) and pi-cation (green dotted line) are represented. B: 2D interaction of key residues of 4M0E, where hydrophobic interactions (red lines) and hydrogen bond (green lines) are represented.

Figure S3: Binding mode with AChE (4M0E). A: 3D interaction of key residues of 4M0E, where pi-pi stacking (blue dotted line), hydrogen bond (yellow dotted line) and pi-cation (green dotted line) are represented. B: 2D interaction of key residues of 4M0E, where hydrophobic interactions (red lines) and hydrogen bond (green lines) are represented.