Supporting Information

Theoretical prediction and design for chalcogenide-quantumdot/TiO₂ heterojunctions for solar cell applications

Kangqi Shen^b, Govindarajan Saranya^b and Mingyang Chen^{a,b,*}

^a Beijing Computational Science Research Center, Beijing 100193, China

^b Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.

*Corresponding author e-mail: shenkangqi@csrc.ac.cn

mychen@ustb.edu.cn

Be4O4/TiO2(001)

Mg4O4/TiO₂(001)

Sr4O4/TiO₂(001)

Ba4O4/TiO2(001)

Cd4O4/TiO₂(001)

Cd4S4/TiO₂(001)

Zn4S4/TiO₂(001)

Ca4O4/TiO₂(001)

Ge4S4/TiO2(001)

As4S2O2/TiO2(001)

As4S3O/TiO₂(001)

Cd4Se2O2/TiO₂(001)

Cd4Se3O/TiO₂(001)

In4S2O2/TiO2(001)

In4S3O/TiO₂(001)

Zn4Se4/TiO₂(001)

Fig.S1 QD/TiO₂(001) Optimized structure

PDOS of Cd4S4/TiO₂(001)

PDOS of Cd4O4/TiO₂(001)

Fig.S2. Partial density of states

	A1	A2	A1/A2	
Be4O4/TiO2	3.35E-07	603.72	5.55E-10	
Cd4O4/TiO2	2.22	603.71	3.68E-03	
Mg4O4/TiO2	5.28	607.82	8.69E-03	
Ba4O4/TiO2	8.40	604.88	1.39E-02	
Ca4O4/TiO2	9.10	601.88	1.51E-02	
Sr4O4/TiO2	9.35	602.02	1.55E-02	
Zn4S4/TiO2	10.95	604.01	1.81E-02	
Cd4Se4/TiO2	12.90	604.95	2.13E-02	
Cd4S4/TiO2	13.96	603.61	2.31E-02	
Ge4S4/TiO2	26.70	604.12	4.42E-02	
Sn4S4/TiO2	27.22	604.44	4.50E-02	
In4S4/TiO2	29.77	603.90	4.93E-02	
As4S4/TiO2	48.46	604.45	8.02E-02	

Table S1. Effective photoexcitation intensities of different QD/TiO2(001)

 adsorption systems

	gap(eV)	wave length of gap (nm)	LUMO- HOMO (eV)	wave length of LUMO- HOMO (nm)	HOMO- VBM (eV)	LUMO- CBM (ev)
pure TiO2	2.87	433				
Be4O4@TiO2	2.76	450	3.71	335	-0.67	0.28
Zn4S4@TiO2	2.27	548	2.33	533	0.45	0.06
Cd4Se4@TiO2	2.14	581	2.14	581	0.33	-0.16
Sn4S4@TiO2	1.83	679	1.94	641	0.92	0.11
Mg4O4@TiO2	1.74	714	2.82	441	0.93	1.08
Ge4S4@TiO2	1.70	731	1.80	691	0.99	0.10
Cd4S4@TiO2	1.65	753	1.65	753	0.71	-0.39
Ba4O4@TiO2	1.59	782	3.19	390	1.14	1.60
Ca4O4@TiO2	1.54	807	3.49	356	1.21	1.95
Cd4O4@TiO2	1.50	829	1.50	829	0.14	-1.11
Sr404@Ti02	1.30	956	3.10	401	1.44	1.80
In4S4@TiO2	0.87	1429	0.87	1429	1.72	-0.16
As4S4@TiO2	0.79	1573	0.79	1573	1.73	-0.24

Table S2. The PDOS information of the adsorption system is, in turn, the band gap, the wavelength corresponding to the band gap, the LUMO-HOMO energy level, the HOMO-VBM energy level, and the LUMO-CBM energy level.

Fig.S3. ELF plots of $In_4S_2O_2/TiO_2$, projected on the: (a) (001) plane, (b) (100) plane.

Fig.S4 ELF plots of $As_4S_2O_2/TiO_2$, projected on the: (a) (001) plane, (b) (100) plane.