

SI 1: The quantitative experiment spectra for the fluorescent spectra at different concentrations of the investigated drug.

SI 2: MFX-induced CPB quenching depicted in the Stern–Volmer graph at three temperature levels.

SI 3: The Modified Stern–Volmer charting for the MFX and CPB stain binding.

SI 4: The charting of log $\Delta F/F$ to log [M] at operating temperature to determine the binding site(s).

SI 5: Van't Hoff charting for the thermodynamic criteria

SI 6: FTIR spectra of the drug, dye, and newly formed product.

SI 7: A list of equations.

The equation	Equ. No.
$f_0/f = 1 + k_{sv}[M] = 1 + k_{q\tau_o}[M]$	(1)
$k_q = k_{sv} / \tau_o$	(2)
$f_0 / \Delta f = \left[\frac{1}{f_a K_a} \right] \left[\frac{1}{[M]} \right] + 1 / f_a$	(3)
$\log \frac{(f_0 - f)}{f} = \log k_d + n \log[M]$	(4)
$\ln K_T = -\Delta H/RT + \Delta S/R$	(5)
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	(6)

 F_0 / F: The relative fluorescence amplitudes of the dye and analyte-dye.

K_{SV}: Volmer dynamic suppressing constant.

k_q: The bimolecular suppressing rate constant.

[M]: the analyte molar concentration.

K_a: The suppression constant.

F_a: The initial fluorescence that can be quenched by the quencher.

 $\Delta F :$ The fluorescence difference.

n: The number of linking sites.

R: The gas constant, K_T is the coupling constant, and T is the temperature (in kelvin scale).

 $\Delta G:$ free energy, $\Delta S,$ entropy changes, and ΔH is enthalpy change.