Electronic Supplementary Information (ESI)

The copper(II) complexes with 2-ethylpyridine and related hydroxyl

pyridine derivatives: the structural, spectroscopic, magnetic and

anticancer in vitro studies.

Magdalena Malik^{1*}, Anna Świtlicka², Alina Bieńko³, Urszula K. Komarnicka³, Dariusz C. Bieńko¹, Sandra Kozieł³, Agnieszka Kyzioł⁴, Tomasz Mazur¹, Barbara Machura²

¹ Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370 Wrocław, Poland,

² Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland

³ Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland

⁴ Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland

* Corresponding author :

Magdalena Malik, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland,

Phone: +48 71 320 24 48; e-mail: magdalena.malik@pwr.edu.pl

Contents:

Figures:

Fig S1. The comparison of the FT-IR spectra of 1-4 in the 3600-500 cm⁻¹ spectral range.
Fig S2. The comparison of the Raman spectra of 1-4 in the 3200-100 cm⁻¹ spectral range.
Fig. S3. The FT-IR spectra for complexes 1-2 in MIR spectral region; *-complex in DMSO solution.
Fig. S4. The FT-IR spectra for complexes 1-2 in FIR spectral region; *-complex in DMSO solution.
Fig. S5. The FT-IR spectra for complex 3 in MIR spectral region; *-complex in DMSO solution.
Fig. S6. The FT-IR spectra for complex 3 in FIR spectral region; *-complex in DMSO solution.
Fig. S7. The FT-IR spectra for complex 4 in MIR spectral region; *-complex in DMSO solution.
Fig. S8. The FT-IR spectra for complex 4 in FIR spectral region; *-complex in DMSO solution.
Fig. S9. UV-Vis spectra with inserted of d-d transition of 1-4 in DMSO/H₂O (9:1, v/v).
Fig S10. Thermogravimetric, TG (black) and differential thermal analysis(DTG, red) curves of complexes 1-4.

Fig S11. Spin density isosurfaces (0.0075 a. u.) for high spin states of the 2–3 compounds, respectively (calculated with the hybrid B3LYP-D3 functional).

Tables:

Table S1. Crystal data and structure refinement for 1-4.

 Table S2. Selected bond lengths (Å) and angles (deg) for 2.

Table S3. The experimental and calculated vibrational frequencies of copper(II) complexes. B3LYP-

D3/def2-TZVP level of theory was applied, the calculated frequencies are left unscaled; only selected bands are discussed.

Table S4. Mulliken populations computed at the B3LYP-D3 theory level of 2-3 (selected atoms).

Fig. S1. The comparison of the FT-IR spectra of 1-4 in the 3600-500 cm⁻¹ spectral range.

Fig. S2. The comparison of the Raman spectra of 1-4 in the 3200-100 cm⁻¹ spectral range.

Fig. S3. The FT-IR spectra for complexes 1-2 in MIR spectral region; *-complex in DMSO solution.

Fig. S4. The FT-IR spectra for complexes 1-2 in FIR spectral region; *-complex in DMSO solution.

Fig. S5. The FT-IR spectra for complex 3 in MIR spectral region; *-complex in DMSO solution.

Fig. S6. The FT-IR spectra for complex 3 in FIR spectral region; *-complex in DMSO solution.

Fig. S7. The FT-IR spectra for complex 4 in MIR spectral region; *-complex in DMSO solution.

Fig. S8. The FT-IR spectra for complex 4 in FIR spectral region; *-complex in DMSO solution.

Fig. S9. UV-Vis spectra with inserted of d-d transition of 1-4 in DMSO/H₂O (9:1, v/v).

Fig. S10. Thermogravimetric, TG (black) and differential thermal analysis(DTG, red) curves of complexes 1-4.

Fig. S11. Spin density isosurfaces (0.0075 a. u.) for high spin states of the 2–3 compounds, respectively (calculated with the hybrid B3LYP-D3 functional).

	1	2	3	<u> </u>
Empirical formula	L L L L L L L L L L L L L L L L L L L	C.H.CLN.OCu	C.H.Cl.N.O.Cu	
Empirical formula	248 74	$C_{281136}C_{161}A_{4}OCu_{4}$	$C_{1411_{16}}C_{121}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	251 84
Temperature [K]	340.74 203 0(2)	203 0(2)	442.27 203 0(2)	331.04 203 0(2)
Wayalangth [Å]	293.0(2)	293.0(2)	293.0(2) 0.71072	293.0(2)
Crystal system	0./10/5	0.71075	0./10/5	0.71075
				C_2/m
		$r z_1/n$	P1	C2/m
Unit cell dimensions [A, °]	a = 7.4891(4)	a = 16.7450(7)	a = 6.1899(3)	a = 13.5721(14)
	b = 7.5179(5)	b = 11.9340(6)	b =8.0094(5)	b = 7.1790(5)
	c = 8.3461(4)	c = 18.8133(9)	c = 8.5356(4)	c = 8.2686(6)
	$\alpha = 97.096(5)$		$\alpha = 89.741(5)$	
	$\beta = 113.966(5)$	$\beta = 103.620(4)$	$\beta = 79.214(4)$	$\beta = 110.398(7)$
	$\gamma = 108.729(5)$		$\gamma = 70.029(6)$	
Volume [Å ³]	388.75(4)	3653.8(3)	389.89(4)	755.12(11)
Ζ	1	4	1	2
Density (calculated) [Mg/m ³]	1.490	1.657	3.076	1.547
Absorption coefficient [mm ⁻¹]	1.736	2.764	1.884	1.474
F(000)	179	1832		366
Crystal size [mm]	0.24 x 0.16 x 0.09	0.12 x 0.08 x 0.06	0.25 x 0.22 x 0.18	0.30 x 0.25 x 0.16
θ range for data collection [°]	3.44 to 25.05	3.39 to 25.05	3.53 to 25.05	3.36 to 25.05
Index ranges	$-8 \le h \le 8$	$-22 \le h \le 21$	$-8 \le h \le 7$	- 16≤ <i>h</i> ≤ 13
	$-8 \le k \le 8$	$-16 \le k \le 13$	$-10 \le k \le 9$	$-8 \le k \le 8$
	$-9 \le l \le 9$	$-17 \le l \le 25$	$-11 \le l \le 10$	$-9 \le l \le 9$
Reflections collected	6599	25795	7390	3292
Independent reflections	$3430 (R_{int} = 0.0397)$	$8883 (R_{int} = 0.0395)$	$1922 (R_{int} = 0.0403)$	728 ($R_{int} = 0.0253$)
Completeness to 2θ [%]	99.6	99.6	99.9	99.6
Max. and min. transmission	1.00 and 0.796	1.00 and 0.649	1.00 and 0.360	1.00 and 0.078
Data / restraints / parameters	1373 / 0 / 89	8883 / 0 / 411	1922 / 0 / 100	728 / 0 / 66
Goodness-of-fit on F ²	1.074	1.011	1.033	1.113
Final R indices $[I > 2\sigma(I)]$	$R_I = 0.0274$	$R_1 = 0.0392$	$R_1 = 0.0309$	$R_1 = 0.0283$
2	$wR_2 = 0.0635$	$wR_2 = 0.0857$	$wR_2 = 0.0641$	$wR_2 = 0.0723$
R indices (all data)	$R_{I} = 0.0328$	$R_1 = 0.0793$	$R_1 = 0.0438$	$R_{l} = 0.0291$
· · · ·	$wR_2 = 0.0658$	$wR_2 = 0.0717$	$wR_2 = 0.0716$	$wR_2 = 0.0717$
Largest diff. peak and hole [eÅ-3]	0.388 and -0.408	0.589 and -0.394	0.328 and -0.578	0.381 and -0.275

Table S1. Crystal data and structure refinement for 1-4.

Table S2. Selected bond lengths (\AA) and angles (deg) for 2.

Bond ler	ngths [Å]	Bond angles [°]				
Cu(1)-N(1)	1.988(3)	N(1)–Cu(1)–Cl(1)	92.51(8)			
Cu(1)- $Cl(1)$	2.3320(9)	N(1)–Cu(1)–Cl(3)	103.12(9)			
Cu(1)- $Cl(3)$	2.4366(10)	N(1)–Cu(1)–Cl(6)	99.47(8)			
Cu(1)-Cl(6)	2.5068(9)	N(1)–Cu(1)–O(1)	174.07(11)			
Cu(1)-O(1)	1.9086(19)	Cl(1)-Cu(1)-Cl(3)	126.99(4)			
Cu(2)-N(2)	1.972(2)	Cl(1)–Cu(1)–Cl(6)	127.84(4)			
Cu(2)-Cl(1)	2.5136(9)	Cl(3)–Cu(1)–Cl(6)	99.36(4)			
Cu(2)-Cl(2)	2.3199(9)	O(1)–Cu(1)–Cl(1)	84.33(6)			
Cu(2)-Cl(5)	2.5672(10)	O(1)–Cu(1)–Cl(3)	82.77(6)			
Cu(2)-O(1)	1.8853(18)	O(1)–Cu(1)–Cl(6)	78.70(6)			
Cu(3)-N(3)	1.970(3)	N(2)-Cu(2)-Cl(1)	95.26(8)			
Cu(3)-Cl(2)	2.6850(9)	N(2)-Cu(2)-Cl(2)	94.47(8)			
Cu(3)-Cl(3)	2.3817(10)	N(2)–Cu(2)–Cl(5)	99.97(9)			
Cu(3)- $Cl(4)$	2.3385(10)	N(2)–Cu(2)–O(1)	174.81(10)			

Cu(3)-O(1)	1.8994(19)	Cl(1)-Cu(2)-Cl(2)	147.54(4)
Cu(4)-N(4)	1.973(3)	Cl(1)-Cu(2)-Cl(5)	91.93(3)
Cu(4)- $Cl(4)$	2.6099(9)	Cl(2)-Cu(2)-Cl(5)	116.69(4)
Cu(4)- $Cl(5)$	2.3400(8)	O(1)-Cu(2)-Cl(1)	79.85(6)
Cu(4)- $Cl(6)$	2.3848(9)	O(1)-Cu(2)-Cl(2)	88.85(6)
Cu(4)-O(1)	1.899(2)	O(1)-Cu(2)-Cl(5)	82.02(7)
		N(3)-Cu(3)-Cl(2)	103.90(8)
		N(3)-Cu(3)-Cl(3)	90.11(8)
		N(3)-Cu(3)-Cl(4)	95.93(8)
		N(3)-Cu(3)-O(1)	174.54(10)
		Cl(2)-Cu(3)-Cl(3)	106.16(4)
		Cl(2)-Cu(3)-Cl(4)	95.54(4)
		Cl(3)-Cu(3)-Cl(4)	155.37(4)
		O(1)-Cu(3)-Cl(2)	78.37(6)
		O(1)-Cu(3)-Cl(3)	84.48(6)
		O(1)-Cu(3)-Cl(4)	88.74(7)
		N(4)-Cu(4)-Cl(4)	100.54(9)
		N(4)-Cu(4)-Cl(5)	92.64(8)
		N(4)–Cu(4)–Cl(6)	96.24(8)
		N(4)-Cu(4)-O(1)	177.88(10)
		Cl(4)-Cu(4)-Cl(5)	106.69(3)
		Cl(4)-Cu(4)-Cl(6)	98.58(3)
		Cl(5)–Cu(4)–Cl(6)	151.16(4)
		O(1)–Cu(4)–Cl(4)	81.08(6)
		O(1)–Cu(4)–Cl(4)	81.08(6)
		O(1)-Cu(4)-Cl(5)	88.19(6)
		O(1)–Cu(4)–Cl(6)	82.12(6)
		Cu(1)–O(1)–Cu(2)	109.66(9)
		Cu(1)-O(1)-Cu(3)	108.01(9)
		Cu(1)-O(1)-Cu(4)	105.97(9)
		Cu(2)-O(1)-Cu(3)	113.99(10)
		Cu(2)-O(1)-Cu(4)	110.99(10)
		Cu(3)-O(1)-Cu(4)	107.86(9)
		Cu(1)– $Cl(1)$ – $Cu(2)$	79.50(3)
		Cu(1)-Cl(3)-Cu(3)	79.49(3)
		Cu(1)-Cl(6)-Cu(4)	76.81(3)
		Cu(2)– $Cl(2)$ – $Cu(3)$	78.34(3)
		Cu(2)- $Cl(5)$ - $Cu(4)$	78.76(3)
		Cu(3)–Cl(4)–Cu(4)	76.48(3)

No		Complex 1			Complex 2		Complex 3		Complex 4			Assignments	
	e	cpl	calcd	e	xpl	calcd	e	cpl	calcd	e	xpl	calcd	
		Domon			Daman			Daman			Daman		
1	IK	Raman		1K 2452 m	Raman		IK	Raman		IK	Raman		
				3452 m									H-bond Intermolecular
2	2070	2070 -	2247	3335 m	2000 -	2240	2070	2000	2220	2110	2005	2206 2171	Interaction
3	3070 m	3070 s	3217-	3079 W	3080 S	3219-	3070 m	3080 m	3220-	3116-	3085 m	3206-3171	v(C-H) _{arom}
	2070	2070	3180	2072		3176	2055	2056	3180	3037W		2000	(0,11)
4	2970 m	2970 m	3104	2972 m	2020	3099	2955 m	2956 m	3065			2880	V _{as} (C-H) _{alif}
5	2937 m	2938 m	3040	2937 m	2938 m	3068	2914 m	2914 m	3096				v _{as} (C-H) _{alif}
													-CH ₂ -
6	2883 m	2883 m	3034	2878 m	2901 m	3040	2817	2820 m	3010	2916 m			$v_{s}(C-H)_{alif}$
7	ov	ov	3010	ov	ov	3041	ov	ov	3046	2850		2885	$v_{s}(C-H)_{alif}$
													-CH ₂ -
							2680 w						overtone 1337
	1855 w			1864 w									overtone
	1732 w			1728 w									overtone
8	1607 s	1606 s	1652	1608 s	1632 w	1654	1607 s	1607 m	1652	1602 m	1601	1647	v(C=C)
9	1569 m	1569 m	1618	1568 m	1568 w	1614	1568 m	1567 m	1614	1573	1568	1611	v(C-C)
10	1484 s	1459 w	1528	1484 s	1467 w	1532	1483 s	1468 m	1526	1472	1497	1515	v(C=N)
11	1440 m	1425 w	1511	1444 s	1443 w	1515	1446 m	1446 w	1506	1445 sh	vw	1478	δ (C-H) scissoring
	1425 m		1506			1508							
			1498			1493							
12	1380 m	1364 w	1423	1378 w		1423	-	-	-			-	δ_{sym} (C-CH ₃) umbrella
13	1336	1348 w	1396	1337 w	1336 vw	1382	1337 m	1342 m	1383			1381	δ C-H wagging
	br, w												
14	1295 m	1295 w	1328	1310 w		1335	1308 m	1308 m	1347	1320 w	1323 s	1315	δC-H twisting
15	1255 w	1217 s	1298	1230 w	1233 m	1301	1248 m	1226 m	1296	1265 s	1263 m	1299	δRpy
	1238 w						1237 sh						
16	1163 m	1165 m	1195	1161 m	1163 w	1197	1186 m	1184	1211				δ C-H (in plane)
							1158 s	1157 m	1194	1157 m	1172 m	1186	
17	1117 w		1146	1115 m	1117 w	1147	1111 s	1116 w	1142	1104 w	1107 m		δC-H (in plane)
18	1057 m	1056 s	1060	1061sh	1063 s	1071	1064 s	1053 s	1059	-	-		ν (C-C) _{in ethyl group} +defR _{py}

Table S3. The experimental and calculated vibrational frequencies of copper(II) complexes. B3LYP-D3/def2-TZVP level of theory was applied, the calculated frequencies are left unscaled; only selected bands are discussed.

19	-			-				1081 s	1099	ov	1058 m	1122	ν(C-O)
20	1033 m	1031 vs	1049	1045 m 1035 sh	1031 s	1050	1052 s	1025 s	1045	1038 m	1038 s	1044	Sym ring breathing (star of David)
21							980 m	976 m	992	999 vs	1004	998	γC-H (out of plane)
	895 m		902	894 w		910	872 s	879 m	888	913 w		899	
	806 vs		794	793 s	781 s	783	789 s	785 m	785	807 m	813 m		
	769 vs	777 vs	775	765 vs	740 m	779	770 vs	757 m	776			778	
	706 m		728	704 m	707 w	725		709 m					
22	654 s	650 s	666	655 s	655 w	671	651 m	648 w	667			675	δR_{pyet}
23				608 s	610 s		606 vs	609 w	620				τR _{pvet}
24	571 m	565 m	573	572 s	558 s	587	572 s	545 m	573				Def R
25				505 m	507 w	523	510 m	505 w	516				τR _{pvet}
	472 m		492	474 w		493							τR _{pvet}
	434 s	435 s	442	437 m		443	432 s	412 vs	434	419 m		429	τR _{pvet}
													pyce

Compound 2		Compound 3	
Cu:	0.5744	Cu	0.5668
Cu:	0.5833	Cl1	0.1199
Cu:	-0.5857	Cl1	0.0245
Cu:	0.5786	0	0.5705
CI:	0.1577	Cu1	0.3237
CI:	0.1261	Cl	0.1302
CI:	-0.0414	01	-0.0351
CI:	-0.0972	Cu1	0.1820
CI:	0.1353	Cl	0.4037
CI:	0.1383	01	-0.0538
0	0.2933		

Table S4. Mulliken populations computed at the B3LYP-D3 theory level of 2-3 (selected atoms).