Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Highly emissive planarized *B*,*N*-diarylated benzonaphthoazaborine compounds for narrowband blue fluorescence

Ngoc Tuyet Nhi Nguyen,[†] Hanif Mubarok,[†] Taehwan Lee, Thi Quyen Tran, Jaehoon Jung* and Min Hyung Lee*

Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea

General considerations

All operations were performed under an inert nitrogen atmosphere using standard Schlenk and glovebox techniques. Anhydrous grade solvents were used after drying over activated molecular sieves (5Å). Spectrophotometric-grade toluene was used for photophysical measurements. Commercial reagents were used without further purification after purchase. Deuterated solvents from Eurisotop were used. NMR spectra were recorded on a Bruker AM 300 (300.13 MHz for ¹H, 75.47 MHz for ¹³C) or a Bruker AVANCE III HD 400 (128.38 MHz for ¹¹B) spectrometer at ambient temperature. Chemical shifts (in ppm) are referenced against external Me₄Si (¹H, ¹³C) and BF₃·OEt₂ (¹¹B). Mass spectra were obtained using a JEOL JMS700 high-resolution EI-mass spectrometer (HR EI-MS) at the Korea Basic Science Institute (KBSI), Daegu, Korea. Cyclic voltammetry experiments were carried out on a CHI600E system. The photophysical analysis was done by using an FS5 spectrophotometer (Edinburgh Instruments) and PLQY spectrophotometer (Quantaurus-QY C11347-11, Hamamatsu Photonics) at total-period analysis center for Ulsan chemical industry of KBSI.

Synthesis

1a, R¹ = H **4a**, R¹ = Me **5a**, R¹ = ^tBu

3-Bromo-*N***-(2-bromophenyl)**naphthalen-**2**-amine (1a)

The mixture of 2,3-dibromonaphthalene (3.00 g, 10.50 mmol), 2-bromoaniline (1.20 g, 7.00 mmol), tris-(dibenzylideneacetone)dipalladium(0) (Pd₂(dba)₃, 0.19 g, 0.21 mmol), bis[(2-diphenylphosphino)phenyl] ether (DPEPhos, 0.23 g, 0.42 mmol), and sodium *tert*-butoxide (NaO'Bu, 1.00 g, 10.5 mmol) in dry toluene (30 mL) was heated at 80 °C for 12 h. After cooling down, the mixture was diluted with CH₂Cl₂ (30 mL), filtered through celite pad, and concentrated under reduced pressure. The crude product was subjected to silica gel column chromatography using CH₂Cl₂/hexane (1:10, v/v) as an eluent to give **1a** as a white solid (yield: 1.40 g, 53%). ¹H NMR (CDCl₃): δ 8.13 (s, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.64–7.60 (m, 3H), 7.45 (ddd, *J* = 13.8, 8.2, 6.8 Hz, 2H), 7.36 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.30 (dd, *J* = 7.3, 1.4 Hz, 1H), 6.92–6.86 (m, 1H), 6.62 (br, 1H). ¹³C NMR (CDCl₃): δ 140.1, 137.5, 133.4, 133.4, 132.2, 129.9, 128.3, 127.0, 126.8, 126.6, 124.7, 122.9, 118.6, 115.6, 114.7, 112.7.

3-Bromo-N-(2-bromo-5-methylphenyl)naphthalen-2-amine (4a)

This compound was prepared in a manner analogous to the synthesis of **1a** using Pd₂(dba)₃ (0.23 g, 0.25 mmol), DPEPhos (0.27 g, 0.5 mmol), NaO'Bu (1.21 g, 12.58 mmol), 2,3-dibromonaphthalene (2.4 g, 8.39 mmol), and 2-bromo-5-methylaniline (1.04 g, 5.59 mmol) to give **4a** as a white powder (yield: 1.10 g, 51%). ¹H NMR (CDCl₃): δ 8.13 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.60 (s, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.46–7.40 (m, 1H), 7.35 (m, 1H), 7.28 (d, J = 1.7 Hz, 1H), 6.72 (dd, J = 8.2, 1.9 Hz, 1H), 6.54 (br, 1H), 2.30 (s, 3H). ¹³C NMR (CDCl₃): δ 139.8, 138.5, 137.7, 133.4, 133.0, 132.2, 129.9, 126.9, 126.8, 126.6, 124.6, 124.1, 119.4, 115.6, 112.8, 111.6, 21.5.

3-Bromo-N-(2-bromo-5-(tert-butyl)phenyl)naphthalen-2-amine (5a)

This compound was prepared in a manner analogous to the synthesis of **1a** using Pd₂(dba)₃ (0.09 g, 0.10 mmol), DPEPhos (0.11 g, 0.21 mmol), NaO'Bu (0.50 g, 5.25 mmol), 2,3-dibromonaphthalene (2.0 g, 7.0 mmol), and 2-bromo-5-(*tert*-butyl)aniline (0.79 g, 3.50 mmol) to give **5a** as a white powder (yield: 1.20 g, 79%). ¹H NMR (CDCl₃): δ 8.13 (s, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.61–7.52 (m, 4H), 7.42 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.33 (ddd, J = 8.0, 6.9, 1.2 Hz, 1H), 6.95 (dd, J = 8.4, 2.3 Hz, 1H), 6.60 (s, 1H), 1.31 (s, 9H). ¹³C NMR (CDCl₃): δ 151.8, 139.2, 138.0, 133.4, 132.8, 132.2, 129.6, 127.0, 126.8, 126.5, 124.4, 120.7, 117.1, 115.2, 112.1, 111.3, 34.9, 31.3.

1b, $R^1 = R^2 = H$ **3b**, $R^1 = H$, $R^2 = {}^tBu$ **4b**, $R^1 = Me$, $R^2 = {}^tBu$ **5b**, $R^1 = {}^tBu$, $R^2 = {}^tBu$

3-Bromo-*N*-(**2-bromophenyl**)-*N*-phenylnaphthalen-**2**-amine (1b)

The mixture of **1a** (1.40 g, 3.71 mmol), iodobenzene (3.80 g, 18.60 mmol), copper iodide (0.35 g, 1.86 mmol), and potassium carbonate (1.50 g, 11.13 mmol) was refluxed at 200 °C for 24 h. After cooling to room temperature, CH₂Cl₂ (30 mL) and water (50 mL) were added to the mixture. The organic layer

was separated and the aqueous layer was extracted with CH₂Cl₂ three times (30 mL × 3). The combined organic layer was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using CH₂Cl₂/hexane (1:10, v/v) as an eluent to give **1b** as a white solid (yield: 1.45 g, 86%). ¹H NMR (CDCl₃): δ 8.16 (s, 1H), 7.77–7.71 (m, 1H), 7.64 (d, *J* = 7.0 Hz, 2H), 7.52 (s, 1H), 7.45 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.23 (dt, *J* = 19.4, 7.3 Hz, 4H), 7.07 (t, *J* = 7.5 Hz, 1H), 7.00 (t, *J* = 7.2 Hz, 1H), 6.78 (d, *J* = 7.9 Hz, 2H). ¹³C NMR (CDCl₃): δ 147.8, 146.2, 143.2, 134.8, 133.6, 133.2, 132.2, 129.5, 129.1, 128.5, 127.4, 127.1, 126.8, 126.7, 126.5, 126.4, 122.2, 122.0, 121.4, 121.3.

3-Bromo-N-(2-bromophenyl)-N-(4-(tert-butyl)phenyl)naphthalen-2-amine (3b)

This compound was prepared in a manner analogous to the synthesis of **1b** using **1a** (2.0 g, 5.3 mmol), copper iodide (0.50 g, 2.65 mmol), potassium carbonate (2.19 g, 15.90 mmol), and 1-(*tert*-butyl)-4-iodobenzene (6.9 g, 26.52 mmol) to give **3b** as a white powder (yield: 1.90 g, 72%). ¹H NMR (CDCl₃): δ 8.13 (s, 1H), 7.73 (dd, J = 6.0, 3.2 Hz, 1H), 7.64–7.59 (m, 2H), 7.46–7.40 (m, 3H), 7.22 (d, J = 8.5 Hz, 3H), 7.14 (dd, J = 8.0, 1.5 Hz, 1H), 7.07–7.01 (m, 1H), 6.71 (d, J = 8.7 Hz, 2H), 1.30 (s, 12H). ¹³C NMR (CDCl₃): δ 146.6, 145.3, 145.1, 143.6, 134.7, 133.5, 133.2, 132.0, 129.2, 128.4, 127.3, 126.8, 126.6, 126.2, 126.1, 125.9, 122.0, 122.0, 121.5, 121.4, 34.4, 31.6.

3-Bromo-N-(2-bromo-5-methylphenyl)-N-(4-(*tert*-butyl)phenyl)naphthalen-2-amine (4b)

This compound was prepared in a manner analogous to the synthesis of **1b** using **4a** (1.1 g, 2.81 mmol), copper iodide (0.26 g, 1.40 mmol), potassium carbonate (1.16 g, 8.43 mmol), and 1-(*tert*-butyl)-4-iodobenzene (3.65 g, 14.06 mmol) to give **4b** as a white powder (yield: 0.90 g, 61%). ¹H NMR (CDCl₃): δ 8.13 (s, 1H), 7.73 (dd, J = 6.2, 3.2 Hz, 1H), 7.63 (dd, J = 6.0, 3.4 Hz, 1H), 7.49–7.40 (m, 4H), 7.22 (d, J = 8.7 Hz, 2H), 6.94 (s, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.68 (d, J = 8.7 Hz, 2H), 2.23 (s, 3H), 1.30 (s, 9H). ¹³C NMR (CDCl₃): δ 146.0, 145.3, 144.8, 143.6, 138.5, 134.3, 133.5, 133.2, 132.0, 129.8, 127.3, 126.8, 126.7, 126.6, 126.1, 125.9, 121.6, 121.1, 118.7, 34.3, 31.6, 21.1.

3-Bromo-N-(2-bromo-5-(tert-butyl)phenyl)-N-(4-(tert-butyl)phenyl)naphthalen-2-amine (5b)

This compound was prepared in a manner analogous to the synthesis of **1b** using **5a** (1.2 g, 2.77 mmol), copper iodide (0.26 g, 1.38 mmol), potassium carbonate (1.15 g, 8.31 mmol), and 1-(*tert*-butyl)-4-iodobenzene (3.60 g, 13.85 mmol) to give **5b** as a white powder (yield: 1.20 g, 75%). ¹H NMR (CDCl₃): δ 8.14 (s, 1H), 7.73 (dd, J = 5.8, 3.1 Hz, 1H), 7.64 (dd, J = 6.1, 3.1 Hz, 1H), 7.55–7.49 (m, 2H), 7.43 (dd, J = 5.8, 2.7 Hz, 2H), 7.21 (d, J = 9.2 Hz, 3H), 7.07 (d, J = 8.4 Hz, 1H), 6.66 (d, J = 8.2 Hz, 2H),

1.30 (s, 9H), 1.20 (s, 9H). ¹³C NMR (CDCl₃): δ 152.0, 145.8, 145.2, 144.5, 143.4, 134.0, 133.5, 133.2, 132.0, 127.4, 126.8, 126.8, 126.7, 126.5, 126.1, 125.8, 123.6, 121.6, 120.6, 118.8, 34.7, 34.3, 31.6, 31.3.

1c, $R^1 = R^2 = H$ **3c**, $R^1 = H$, $R^2 = {}^tBu$ **4c**, $R^1 = Me$, $R^2 = {}^tBu$ **5c**, $R^1 = R^2 = {}^tBu$

12,12-Dimethyl-5-phenyl-5,12-dihydrobenzo[b]naphtho[2,3-e][1,4]azasiline (1c)

To a solution of **1b** (1.50 g, 3.31 mmol) in dry THF (30 mL) was added dropwise *n*-BuLi (2.5 M in hexane, 2.65 mL, 6.62 mmol) at -78 °C. The mixture was stirred at -78 °C for 1 h and then Me₂SiCl₂ (0.43 g, 3.31 mmol) was slowly added. After stirring at room temperature overnight, the resulting white turbid mixture was quenched by saturated aqueous NH₄Cl solution (50 mL) and extracted with diethyl ether (30 mL × 3). The combined organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography using CH₂Cl₂/hexane (1:10, v/v) as an eluent to give **1c** as a white powder (yield: 0.97 g, 83%). ¹H NMR (CDCl₃): δ 8.10 (s, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.70 (dd, *J* = 10.3, 4.7 Hz, 2H), 7.63–7.54 (m, 2H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.39–7.35 (m, 2H), 7.33–7.24 (m, 2H), 7.16 (ddd, *J* = 8.8, 7.2, 1.8 Hz, 1H), 6.99 (dt, *J* = 7.1, 3.6 Hz, 1H), 6.62 (s, 1H), 6.38 (d, *J* = 8.6 Hz, 1H), 0.62 (s, 6H). ¹³C NMR (CDCl₃): δ 149.8, 146.9, 144.0, 135.3, 134.8, 134.4, 131.3, 131.2, 130.2, 128.1, 128.0, 127.3, 127.2, 126.7, 123.5, 122.8, 119.8, 119.0, 117.2, 112.1, 0.4.

5-(4-(*Tert*-butyl)phenyl)-12,12-dimethyl-5,12-dihydrobenzo[b]naphtho[2,3-e][1,4]azasiline (3c)

This compound was prepared in a manner analogous to the synthesis of **1c** using **3b** (1.94 g, 3.82 mmol) to give **3c** as a white powder (yield: 1.14 g, 73%). ¹H NMR (CDCl₃): δ 8.08 (s, 1H), 7.76 (dd, J = 8.0, 1.3 Hz, 1H), 7.69–7.65 (m, 2H), 7.59 (dd, J = 7.1, 1.8 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.33–7.22 (m, 4H), 7.16 (ddd, J = 8.9, 7.2, 1.9 Hz, 1H), 6.96 (t, J = 6.9 Hz, 1H), 6.62 (s, 1H), 6.38 (d, J = 8.4 Hz, 1H), 1.47 (s, 9H), 0.60 (s, 6H). ¹³C NMR (CDCl₃): δ 151.1, 150.0, 147.1, 141.2, 135.2, 134.8, 134.3, 130.6, 130.2, 128.1, 128.0, 127.3, 127.2, 126.6, 123.4, 122.7, 119.6, 118.8, 117.1, 112.0, 35.0, 31.7, 0.5.

5-(4-(*Tert*-butyl)phenyl)-3,12,12-trimethyl-5,12-dihydrobenzo[b]naphtho[2,3-e][1,4]azasiline (4c)

This compound was prepared in a manner analogous to the synthesis of **1c** using **4b** (0.90 g, 1.72 mmol) to give **4c** as a white powder (yield: 0.54 g, 75%). ¹H NMR (CDCl₃): δ 8.05 (s, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.68–7.63 (m, 2H), 7.48 (d, *J* = 7.3 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.30 (dd, *J* = 6.7, 1.3 Hz, 1H), 7.26–7.20 (m, 3H), 6.80 (d, *J* = 7.3 Hz, 1H), 6.56 (s, 1H), 6.19 (s, 1H), 2.17 (s, 3H), 1.47 (s, 9H), 0.57 (s, 6H). ¹³C NMR (CDCl₃): δ 151.0, 150.1, 147.2, 141.2, 140.2, 135.2, 134.8, 134.3, 130.5, 128.0, 127.9, 127.3, 127.2, 126.6, 123.3, 123.0, 120.8, 117.7, 115.5, 112.1, 35.0, 31.7, 22.3, 0.6.

3-(*Tert*-butyl)-5-(4-(*tert*-butyl)phenyl)-12,12-dimethyl-5,12-dihydrobenzo[b]naphtho[2,3-e][1,4]azasiline (5c)

This compound was prepared in a manner analogous to the synthesis of **1c** using **5b** (1.1 g, 1.95 mmol) to give **5c** as a white powder (yield: 0.75 g, 83%). ¹H NMR (CDCl₃): δ 8.06 (s, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.69–7.64 (m, 2H), 7.51 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.33–7.26 (m, 2H), 7.26–7.20 (m, 2H), 6.99 (dd, J = 7.6, 1.6 Hz, 1H), 6.70 (s, 1H), 6.31 (d, J = 1.5 Hz, 1H), 1.46 (s, 9H), 1.09 (s, 9H), 0.57 (s, 6H). ¹³C NMR (CDCl₃): δ 153.1, 151.0, 150.1, 147.1, 141.4, 135.3, 134.9, 134.0, 130.5, 127.9, 127.9, 127.3, 127.2, 126.5, 123.2, 122.9, 117.0, 115.6, 114.6, 111.9, 35.0, 34.9, 31.6, 31.0, 0.6.

1d, $R^1 = R^2 = R^3 = H$ **2d**, $R^1 = R^2 = H$, $R^3 = {}^tBu$ **3d**, $R^1 = H$, $R^2 = R^3 = {}^tBu$ **4d**, $R^1 = Me$, $R^2 = R^3 = {}^tBu$ **5d**, $R^1 = R^2 = R^3 = {}^tBu$

12-(2,6-Di(prop-1-en-2-yl)phenyl)-5-phenyl-5,12-dihydrobenzo[b]naphtho[2,3-e][1,4]azaborinine (1d)

Boron tribromide (BBr₃, 0.53 g, 2.10 mmol) was added carefully to the flask containing **1c** (0.25 g, 0.70 mmol) at room temperature. After stirring at 60 °C for 3 h, the volatiles were removed under reduced pressure at the same temperature for 2 h. The crude mixture was dissolved in anhydrous toluene (10 mL), into which a toluene solution of (2,6-di(prop-1-en-2-yl)phenyl)lithium was added at 0 °C. The

latter solution was prepared by the addition of *n*-BuLi (2.5 M in hexane, 0.4 mL, 1 mmol) into a toluene solution of 2-bromo-1,3-di(prop-1-en-2-yl)benzene (0.20 g, 0.84 mmol) at 0 °C. After stirring at room temperature for 12 h, the mixture was quenched with saturated NH₄Cl solution and extracted with diethyl ether. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was subjected to silica gel column chromatography using CH₂Cl₂/hexane (1:6, v/v) to give **1d** as a yellow solid (yield: 0.10 g, 40%). ¹H NMR (CD₂Cl₂): δ 8.47 (s, 1H), 7.84 (d, *J* = 7.7 Hz, 2H), 7.78 (t, *J* = 7.3 Hz, 2H), 7.72–7.66 (m, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.45 (m, 7H), 7.31–7.25 (m, 1H), 7.08–7.00 (m, 2H), 6.70 (d, *J* = 8.7 Hz, 1H), 4.65 (s, 2H), 4.53 (s, 2H), 1.91 (s, 6H). ¹³C NMR (CD₂Cl₂): δ 148.2, 148.0, 147.8, 144.5, 142.5, 138.9, 137.6, 136.2, 133.2, 131.5, 129.2, 129.1, 127.9, 127.8, 127.4, 127.3, 125.9, 123.6, 119.4, 117.3, 116.7, 112.3, 112.3, 24.7. ¹¹B NMR (CD₂Cl₂): δ 55.3.

12-(4-(*Tert*-butyl)-2,6-di(prop-1-en-2-yl)phenyl)-5-phenyl-5,12-dihydrobenzo[b]naphtho[2,3-e][1,4]azaborinine (2d)

This compound was prepared in a manner analogous to the synthesis of **1d** using **1c**, BBr₃, and (4-(*tert*-butyl)-2,6-di(prop-1-en-2-yl)phenyl)lithium to give **2d** as a yellow powder (yield: 0.19 g, 40%). ¹H NMR (CD₂Cl₂): δ 8.50 (s, 1H), 7.85 (dd, J = 7.5, 1.9 Hz, 2H), 7.80–7.74 (m, 2H), 7.71–7.65 (m, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.45–7.37 (m, 6H), 7.28 (ddd, J = 8.0, 6.7, 1.2 Hz, 1H), 7.05–6.99 (m, 2H), 6.69 (d, J = 8.6 Hz, 1H), 4.64 (s, 2H), 4.52 (s, 2H), 1.93 (s, 6H), 1.48 (s, 9H). ¹³C NMR (CD₂Cl₂): δ 150.2, 148.7, 147.8, 147.7, 144.5, 142.5, 138.9, 137.6, 136.2, 133.1, 131.5, 131.1, 129.1, 129.1, 127.8, 127.8, 127.2, 123.6, 123.0, 119.3, 117.0, 116.7, 112.2, 35.0, 31.7, 24.8. ¹¹B NMR (CD₂Cl₂): δ 55.3.

12-(4-(*Tert*-butyl)-2,6-di(prop-1-en-2-yl)phenyl)-5-(4-(*tert*-butyl)phenyl)-5,12dihydrobenzo[b]naphtho[2,3-e][1,4]azaborinine (3d)

This compound was prepared in a manner analogous to the synthesis of **1d** using **3c**, BBr₃, and (4-(*tert*-butyl)-2,6-di(prop-1-en-2-yl)phenyl)lithium to give **3d** as a yellow powder (yield: 0.29 g, 43%). ¹H NMR (CD₂Cl₂): δ 8.49 (s, 1H), 7.87–7.82 (m, 2H), 7.77 (d, J = 8.5 Hz, 2H), 7.60 (s, 1H), 7.44–7.37 (m, 4H), 7.33 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 6.8 Hz, 1H), 7.07 (s, 1H), 7.01 (t, J = 6.8 Hz, 1H), 6.71 (d, J = 8.7 Hz, 1H), 4.64 (s, 2H), 4.52 (s, 2H), 1.92 (s, 6H), 1.51 (s, 9H), 1.48 (s, 9H). ¹³C NMR (CD₂Cl₂): δ 152.3, 150.1, 148.7, 148.0, 147.8, 144.7, 139.7, 138.9, 137.6, 136.2, 133.0, 130.3, 129.1, 128.4, 127.8, 127.2, 123.5, 123.0, 119.2, 117.0, 116.8, 112.2, 35.3, 35.0, 31.7, 24.8. ¹¹B NMR (CD₂Cl₂): δ 52.4.

12-(4-(*Tert*-butyl)-2,6-di(prop-1-en-2-yl)phenyl)-5-(4-(*tert*-butyl)phenyl)-3-methyl-5,12dihydrobenzo[b]naphtho[2,3-e][1,4]azaborinine (4d) This compound was prepared in a manner analogous to the synthesis of **1d** using **4c**, BBr₃, and (4-*(tert*-butyl)-2,6-di(prop-1-en-2-yl)phenyl)lithium to give **4d** as a yellow powder (yield: 0.37 g, 52%). ¹H NMR (CD₂Cl₂): δ 8.45 (s, 1H), 7.86–7.70 (m, 4H), 7.59 (d, J = 8.4 Hz, 1H), 7.43–7.35 (m, 3H), 7.29 (dd, J = 12.4, 8.3 Hz, 3H), 7.01 (s, 1H), 6.85 (d, J = 7.8 Hz, 1H), 6.52 (s, 1H), 4.63 (d, J = 1.5 Hz, 2H), 4.52 (s, 2H), 2.29 (s, 3H), 1.91 (s, 6H), 1.51 (s, 9H), 1.48 (s, 9H). ¹³C NMR (CD₂Cl₂): δ 152.2, 150.0, 148.7, 148.1, 147.7, 143.9, 139.6, 138.6, 137.6, 136.1, 130.3, 129.0, 128.3, 127.7, 127.6, 127.3, 123.4, 123.0, 120.9, 116.8, 116.7, 112.2, 35.3, 34.9, 31.7, 2.8, 22.6. ¹¹B NMR (CD₂Cl₂): δ 55.4.

3-(*Tert*-butyl)-12-(4-(*tert*-butyl)-2,6-di(prop-1-en-2-yl)phenyl)-5-(4-(*tert*-butyl)phenyl)-5,12dihydrobenzo[b]naphtho[2,3-e][1,4]azaborinine (5d)

This compound was prepared in a manner analogous to the synthesis of **1d** using **5c**, BBr₃, and (4-(*tert*-butyl)-2,6-di(prop-1-en-2-yl)phenyl)lithium to give **5d** as a yellow powder (yield: 0.19 g, 40%). ¹H NMR (CD₂Cl₂): δ 8.45 (s, 1H), 7.86–7.70 (m, 4H), 7.59 (d, J = 8.4 Hz, 1H), 7.43–7.35 (m, 3H), 7.29 (dd, J = 12.4, 8.3 Hz, 3H), 7.01 (s, 1H), 6.85 (d, J = 7.8 Hz, 1H), 6.52 (s, 1H), 4.63 (d, J = 1.5 Hz, 2H), 4.52 (s, 2H), 2.29 (s, 3H), 1.91 (s, 6H), 1.51 (s, 9H), 1.48 (s, 9H). ¹³C NMR (CD₂Cl₂): δ 152.3, 150.0, 148.8, 148.0, 147.7, 144.7, 139.7, 138.7, 137.2, 136.1, 130.4, 129.1, 128.2, 127.7, 127.6, 127.5, 123.3, 123.0, 117.3, 116.8, 113.4, 112.1, 35.5, 35.3, 35.0, 31.7, 31.6, 31.2, 31.0, 24.8. ¹¹B NMR (CD₂Cl₂): δ 55.2.

BzNp (1), $R^1 = R^2 = R^3 = H$ **BuBzNp (2)**, $R^1 = R^2 = H$, $R^3 = {}^tBu$ **Bu₂BzNp (3)**, $R^1 = H$, $R^2 = R^3 = {}^tBu$ **Bu₂BzMeNp (4)**, $R^1 = Me$, $R^2 = R^3 = {}^tBu$ **Bu₂BzBuNp (5)**, $R^1 = R^2 = R^3 = {}^tBu$

4,4,14,14-Tetramethyl-8-phenyl-8,14-dihydro-4H-8-aza-3a2-boraphenaleno[2,1,9,8-defg]tetracene (BzNp, 1)

The mixture of **1d** (0.10 g, 0.22 mmol) and scandium(III) triflate (Sc(OTf)₃, 0.22 g, 0.44 mmol) in anhydrous 1,2-dichloroethane (50 mL) was refluxed for 12 h. After cooling down, a saturated aqueous

solution of NaHCO₃ was added. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂. The combined organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified through silica gel chromatography using CH₂Cl₂/hexane (1:6, v/v) to give **1** as a yellow solid (yield: 0.04 g, 36%). ¹H NMR (CD₂Cl₂): δ 8.75 (m, 1H), 7.77 (m, 4H), 7.72–7.65 (m, 3H), 7.54 (t, *J* = 8.1 Hz, 1H), 7.47–7.39 (m, 5H), 6.97 (s, 1H), 6.48 (d, *J* = 8.4 Hz, 1H), 2.23 (s, 6H), 1.83 (s, 6H). ¹³C NMR (CD₂Cl₂): δ 160.3, 156.9, 154.8, 154.1, 147.5, 144.0, 142.5, 138.5, 133.8, 132.6, 131.5, 131.0, 130.1, 129.0, 128.5, 126.4, 124.8, 123.9, 122.5, 117.9, 112.6, 111.9, 44.8, 43.0, 35.0, 33.6. ¹¹B NMR (CD₂Cl₂): δ 43.1. HRMS (EI): *m*/*z* [M]⁺ calcd for C₃₄H₂₈BN: 461.2315; found: 461.2313.

2-(*Tert*-butyl)-4,4,14,14-tetramethyl-8-phenyl-8,14-dihydro-4H-8-aza-3a2-boraphenaleno[2,1,9,8-defg]tetracene (BuBzNp, 2)

This compound was prepared in a manner analogous to the synthesis of **1** using **2d** (0.19 g, 0.32 mmol) to give **2** as a yellow solid (yield: 0.07 g, 36%). ¹H NMR (CD₂Cl₂): δ 8.78–8.71 (m, 1H), 7.82–7.73 (m, 4H), 7.71–7.64 (m, 2H), 7.54 (t, *J* = 8.1 Hz, 1H), 7.48–7.38 (m, 5H), 6.95 (s, 1H), 6.46 (d, *J* = 8.1 Hz, 1H), 2.23 (s, 6H), 1.83 (s, 6H), 1.51 (s, 9H). ¹³C NMR (CD₂Cl₂): δ 160.0, 157.1, 155.7, 154.4, 154.3, 147.5, 144.0, 142.6, 138.5, 133.6, 131.5, 131.1, 130.1, 129.0, 128.5, 126.3, 125.4, 122.4, 121.9, 121.1, 117.9, 112.5, 111.8, 45.1, 43.2, 36.1, 35.1, 33.7, 31.8. ¹¹B NMR (CD₂Cl₂): δ 44.6. HRMS (EI): *m/z* [M]⁺ calcd for C₃₈H₃₆BN: 517.2941; found: 517.2936.

2-(*Tert*-butyl)-8-(4-(*tert*-butyl)phenyl)-4,4,14,14-tetramethyl-8,14-dihydro-4H-8-aza-3a2boraphenaleno[2,1,9,8-defg]tetracene (Bu₂BzNp, 3)

This compound was prepared in a manner analogous to the synthesis of **1** using **3d** (0.29 g, 0.51 mmol) to give **3** as a yellow solid (yield: 0.14 g, 48%). ¹H NMR (CD₂Cl₂): δ 8.74 (m, 1H), 7.79 (dd, J = 5.5, 1.7 Hz, 2H), 7.75 (dd, J = 4.4, 1.7 Hz, 2H), 7.70 (dd, J = 6.4, 3.4 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 7.47–7.38 (m, 3H), 7.38–7.33 (m, 2H), 6.99 (s, 1H), 6.48 (d, J = 8.1 Hz, 1H), 2.23 (s, 6H), 1.83 (s, 6H), 1.51 (s, 9H), 1.50 (s, 9H). ¹³C NMR (CD₂Cl₂): δ 159.9, 157.1, 155.6, 154.3, 154.3, 152.1, 147.6, 144.1, 139.7, 138.5, 133.6, 130.2, 130.1, 128.5, 128.4, 126.2, 125.3, 122.4, 121.9, 121.1, 117.8, 112.6, 111.8, 45.0, 43.2, 36.1, 35.2, 35.1, 33.7, 31.8, 31.7. ¹¹B NMR (CD₂Cl₂): δ 41.2. HRMS (EI): *m/z* [M]⁺ calcd for C₄₂H₄₄BN: 573.3567; found: 573.3569.

2-(*Tert*-butyl)-8-(4-(*tert*-butyl)phenyl)-4,4,6,14,14-pentamethyl-8,14-dihydro-4H-8-aza-3a2boraphenaleno[2,1,9,8-defg]tetracene (Bu₂BzMeNp, 4)

This compound was prepared in a manner analogous to the synthesis of **1** using **4d** (0.3 g, 0.51 mmol) to give **4** as a yellow solid (yield: 0.11 g, 32%). ¹H NMR (CD₂Cl₂): δ 8.73 (dd, J = 6.8, 3.5 Hz, 1H), 7.80–7.72 (m, 4H), 7.68 (dd, J = 6.5, 3.4 Hz, 1H), 7.44–7.39 (m, 2H), 7.36–7.31 (m, 2H), 7.24 (s, 1H), 6.93 (s, 1H), 6.33 (s, 1H), 2.39 (s, 3H), 2.22 (s, 6H), 1.82 (s, 6H), 1.51 (d, J = 2.9 Hz, 18H). ¹³C NMR (CD₂Cl₂): δ 159.9, 157.0, 155.6, 154.2, 152.1, 147.6, 144.3, 144.1, 139.6, 138.4, 133.5, 130.2, 130.0, 128.5, 128.4, 126.2, 125.2, 122.3, 121.8, 121.1, 117.7, 112.5, 111.7, 45.0, 43.1, 36.0, 35.2, 35.1, 33.6, 31.8, 31.6, 21.1. ¹¹B NMR (CD₂Cl₂): δ 44.7. HRMS (EI): m/z [M]⁺ calcd for C₄₃H₄₆BN: 587.3723; found: 587.3722.

2,6-Di-*tert*-butyl-8-(4-(*tert*-butyl)phenyl)-4,4,14,14-tetramethyl-8,14-dihydro-4H-8-aza-3a2boraphenaleno[2,1,9,8-defg]tetracene (Bu₂BzBuNp, 5)

This compound was prepared in a manner analogous to the synthesis of **1** using **5d** (0.2 g, 0.32 mmol) to give **5** as a yellow solid (yield: 0.06 g, 35%). ¹H NMR (CD₂Cl₂): δ 8.74 (dd, J = 6.5, 3.6 Hz, 1H), 7.76 (dd, J = 8.5, 5.7 Hz, 4H), 7.70 (dd, J = 6.3, 3.5 Hz, 1H), 7.46 (d, J = 1.0 Hz, 1H), 7.44–7.39 (m, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.02 (s, 1H), 6.48 (d, J = 1.0 Hz, 1H), 2.23 (s, 6H), 1.83 (s, 6H), 1.51 (d, J = 0.8 Hz, 18H), 1.25 (s, 9H). ¹³C NMR (CD₂Cl₂): δ 159.8, 157.2, 156.3, 155.4, 154.5, 154.1, 152.1, 147.7, 144.3, 139.7, 138.5, 130.3, 130.1, 128.5, 128.2, 126.1, 125.2, 122.3, 121.8, 121.2, 115.6, 111.7, 109.7, 45.1, 43.3, 36.0, 36.0, 35.2, 33.6, 31.8, 31.6, 31.3. ¹¹B NMR (CD₂Cl₂): δ 45.7. HRMS (EI): m/z [M]⁺ calcd for C₄₆H₅₂BN: 629.4193; found: 629.4193.

Cyclic voltammetry

Cyclic voltammetry measurements were carried out at room temperature in CH_2Cl_2 or THF (5 × 10⁻⁴ M) with a three-electrode cell configuration comprising platinum working and counter electrodes and an Ag/AgNO₃ (0.01 M in CH₃CN) reference electrode at room temperature. Tetra-*n*-butylammonium hexafluorophosphate (0.1 M) was used as the supporting electrolyte. The oxidation potentials were recorded at a scan rate of 100–200 mV/s and are reported against the ferrocene/ferrocenium (Fc/Fc⁺) redox couple. The HOMO and LUMO energy levels were determined from the electrochemical oxidation and reduction ($E_{1/2}$) peaks of cyclic voltammograms.

Computational details

The computational study was carried out using the PBE0 hybrid functional¹ and 6-31+G(d,p) basis set implemented in GAUSSIAN 16 software package.² The ground (S₀) and lowest singlet (S₁) excited states of compounds 1–5 were optimized using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, respectively, with the same functional and basis set. Natural transition orbitals (NTOs) were utilized to examine the characteristics for their electronic transitions from S_0 to S_1 state.³ The polarizable continuum model using the integral equation formalism (IEFPCM) was employed to take account for the influence of solvent medium (toluene) on molecular geometric and electronic structures.⁴ Nucleus-independent chemical shift (NICS) values were computed to identify the influence of increased conjugation length on the spectral wavelength at the PBE0/6-311++G(d,p)//PBE0/6-31G(d,p) level of theory.⁵ The NICS(1) values obtained at 1 Å above the ring centers were utilized to reduce the local effects of sigma bonds.⁶ The root-mean-square displacement values of structural deviation during transition between S_0 and S_1 states were computed using Multiwfn programs.⁷

Fig. S1. TGA curves of 1–5.

Table S1. Oxidation and reduction potentials, optical bandgaps, and HOMO/LUMO energy levels of 1–5.

compd	$E_{\rm ox}$ (V) ^{<i>a</i>}	$E_{\rm red}({ m V})^a$	$E_{\rm g}({\rm eV})$	HOMO (eV)	LUMO (eV)
1	0.52	-2.48	3.00	-5.32	-2.32
2	0.51	-2.49	3.00	-5.31	-2.31
3	0.48	-2.50	2.98	-5.28	-2.30
4	0.46	-2.59	3.05	-5.26	-2.21
5	0.44	-2.62	3.06	-5.24	-2.18

^{*a*}Half-wave potential ($E_{1/2}$).

Fig. S2. UV/Vis absorption and PL spectra of 1–5 in toluene $(2.0 \times 10^{-5} \text{ M})$ at 298 K. The absorption and emission maximum wavelengths, Stokes shifts, and FWHMs are given.

Fig. S3. Transient PL decay curves of 1–5 in toluene at 298 K.

Fig. S4. PL spectra of PMMA films doped with 1 wt% 1–5 (λ_{exc} = 335 nm).

		0()1)	5
compd	$\lambda_{ m abs}$	f	Major contribution
1	430	0.1711	HOMO \rightarrow LUMO (98.3%)
2	427	0.1950	HOMO \rightarrow LUMO (98.2%)
3	429	0.2033	HOMO \rightarrow LUMO (98.2%)
4	425	0.2055	HOMO \rightarrow LUMO (98.1%)
5	429	0.1947	HOMO \rightarrow LUMO (98.2%)

Table S2. The absorption wavelength (λ_{abs} in nm) and corresponding oscillator strength (*f*) for the lowest energy electronic excitation, i.e., S₀ to S₁ transition, of compounds 1–5 obtained using the TDDFT calculations at the PBE0/6-31+g(d,p) level of theory.

Table S3. The emission wavelength (λ_{em} in nm) and corresponding oscillator strength (*f*) for the lowest energy electronic de-excitation, i.e., S₁ to S₀ transition, of compounds 1–5 obtained using the TDDFT calculations at the PBE0/6-31+g(d,p) level of theory.

compd	$\lambda_{ m em}$	f	Major contribution
1	456	0.1552	HOMO \rightarrow LUMO (98.5%)
2	452	0.1760	HOMO \rightarrow LUMO (98.4%)
3	454	0.1831	HOMO \rightarrow LUMO (98.5%)
4	452	0.1791	HOMO \rightarrow LUMO (98.4%)
5	454	0.1752	HOMO \rightarrow LUMO (98.5%)

Fig. S5. Natural transition orbitals (NTO) of compounds 1-5 for the transitions from S₀ to S₁ state obtained using the TDDFT calculations at the PBE0/6-31+g(d,p) level of theory.

Fig. S6. Structural overlap of the ground (S₀, red) and lowest singlet excited (S₁, blue) states for the compounds 1–5. The root-mean-square displacement values of structural deviation (SD_{RMSD}) and corresponding reorganization energies (λ_{reorg}) are provided.

Fig. S7. ¹³C (top) and ¹H (bottom) NMR spectra of **1a** in CDCl₃ (* from water and † from residual CHCl₃).

Fig. S8. ¹³C (top) and ¹H (bottom) NMR spectra of **4a** in CDCl₃ (* from water and † from residual CHCl₃).

Fig. S9. ¹³C (top) and ¹H (bottom) NMR spectra of **5a** in CDCl₃ (* from water and † from residual CHCl₃).

Fig. S10. ¹³C (top) and ¹H (bottom) NMR spectra of 1b in CDCl₃.

Fig. S11. ¹³C (top) and ¹H (bottom) NMR spectra of **3b** in CDCl₃ (* from water and † from residual CHCl₃).

Fig. S12. ¹³C (top) and ¹H (bottom) NMR spectra of **4b** in CDCl₃ (* from water and † from residual CHCl₃).

Fig. S13. ¹³C (top) and ¹H (bottom) NMR spectra of **5b** in CDCl₃ (* from water).

Fig. S14. ¹³C (top) and ¹H (bottom) NMR spectra of 1c in CDCl₃.

Fig. S15. ¹³C (top) and ¹H (bottom) NMR spectra of 3c in CDCl₃.

Fig. S16. ¹³C (top) and ¹H (bottom) NMR spectra of **4c** in CDCl₃ (* from water and † from residual CHCl₃).

Fig. S17. ¹³C (top) and ¹H (bottom) NMR spectra of **5c** in CDCl₃ (* from water and † from residual CHCl₃).

Fig. S18. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of **1d** in CD₂Cl₂ († from residual CHDCl₂).

Fig. S19. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of **2d** in CD₂Cl₂ (* from water and † from residual CHDCl₂).

Fig. S20. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of 3d in CD_2Cl_2 († from residual CHDCl₂).

Fig. S21. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of 4d in CD_2Cl_2 († from residual CHDCl₂).

Fig. S22. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of 5d in CD_2Cl_2 († from residual CHDCl₂).

Fig. S23. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of **1** in CD_2Cl_2 (* from water and † from residual CHDCl₂).

Fig. S24. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of 2 in CD_2Cl_2 († from residual CHDCl₂).

Fig. S25. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of **3** in CD_2Cl_2 (* from water and † from residual CHDCl₂).

Fig. S26. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of 4 in CD_2Cl_2 († from residual CHDCl₂).

Fig. S27. ¹H (bottom), ¹³C (middle), and ¹¹B (top) NMR spectra of 5 in CD_2Cl_2 († from residual CHDCl₂).

References

1. Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.
 Martin, R. L. J. Chem. Phys. **2003**, *118*, 4775-4777.
 Tomasi, J.; Mennucci, B.; Cammi, R. *Chem. Rev.* **2005**, *105*, 2999.

5. Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem. Rev. 2005, 105, 3842-3888.

6. Schleyer, P. v. R.; Manoharan, M.; Wang, Z.-X.; Kiran, B.; Jiao, H.; Puchta, R.; Hommes, N. J. R. v. E. *Org. Lett.* **2001**, *3*, 2465-2468.

7. Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580-592.