How do layered double hydroxides evolve? First *in situ* insights into their synthesis processes

G. Doungmo,^{a,b} A. F. Morais,^c D. Mustafa,^c T. Kamgaing,^b E. Njanja,^b M. Etter,^d I. K. Tonlé ^{b*} and H. Terraschke ^{a*}

- a. Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118 Kiel, Germany. E-mail: hterraschke@ac.uni-kiel.de.
- b. Laboratory of Noxious Chemistry and Environmental Engineering, University of Dschang
 P.O. BOX: 67 Dschang, Cameroon
- c. Instituto de Física da Universidade de São Paulo, São Paulo 05508-090, Brazil
- d. DESY Photon Science, Notkestr. 85, 22607 Hamburg, Germany.

Electronic supplementary information

Contents

1. Experimental Setups	.S2
2. Influence of the reactant concentration	.S4
3. Influence of the temperature	.S5
4. Simultaneous addition of metallic and basic solutions.	.S6
5. Addition of metallic to basic solution	.S6

1. Experimental Setups

Figure S1: Schematic representation of LDH synthesis approach A (left), approach B (middle) and approach C (right).

Figure S2: Brown ring test (sample S^B) for detection of nitrate ions in the supernatant solution.

Figure S3. Left: Setup I containing a pH sensor (1), temperature sensor (2), optical fiber for light scattering measurements (3), jacket for temperature control (4) and luminescence spectrometer (5). Right: Setup II showing in addition the turbidity sensor (6), dosing system for metallic (7) and basic (8) solutions.

Figure S4: Setup II used at the P02.1 PETRA III beamline for simultaneous measurements of *in situ* X-ray diffraction (XRD) analysis and light scattering showing the temperature sensor (1), reactor holder (2), glass reactor (3), external UV excitation light source (4), X-ray beam (60 keV) (5), dosing system (6) and pH sensor (7).

2. Influence of the reactant concentration

Figure S5: a) *Ex situ* XRD patterns b) and Fourier-transform infrared spectroscopy (FTIR) spectra of the samples synthesized with different reactant concentrations.

3. Influence of the temperature

Figure S6: *Ex situ* XRD patterns (top) and FTIR spectra (bottom) performed on samples synthesized at different temperatures.

4. Simultaneous addition of metallic and basic solutions.

Figure S7. FTIR analysis of sample S^B.

5. Addition of metallic to basic solution

Figure S8. Ex situ XRD performed after the synthesis of sample S^c.