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Section S1. Detailed information about Baeyer-Villiger reaction
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Supplementary Fig. 1 The general mechanism of Baeyer-Villiger reaction 
An example of a typical small-scale reaction is the Baeyer-Villiger reaction1. An ester can be formed 
from a ketone or an aldehyde using a peroxyacid or a peroxide. This reaction, as a rearrangement reaction, 
is crucially characterized by the fact that the regional chemistry is dependent on the ability of the group 
to migrate. Typically, groups are ranked in terms of their ability to migrate as follows: tertiary alkyl > 
secondary al-kyl > aryl > methyl. There is a general mechanism for this reaction that can be found in 
Supplementary Figure 1. First, a proton activates the carbonyl group of the reactant, al-lowing it to be 
attacked more readily by the peroxyacid. Secondly, carbonyl groups are attacked by peroxyacids to form 
Criegee intermediates. The carboxylic acid then leaves the intermediate, leaving an electron-deficient 
oxygen cation. As the electron-deficient oxygen is unstable, the hydrocarbon group will rapidly move to 
the electron-deficient oxygen of the hydrogen peroxide group. And a protonated ester is obtained, which 
is rapidly deprotonated to form the final product.

Section S2. Detailed information about Heck reaction
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The other example of a small data set reaction is the Heck reaction, which forms a new olefin through 
the coupling of an olefin with an organohalide or trifluoride2. Heck reactions can be divided into two 
categories: intermolecular and intramolecular Heck reactions. Generally speaking, alkenes with more 
substituent groups of reactants will react again more slowly. Therefore, reaction rates are roughly in the 
following order CH2=CH2 > CH2=CHOAc > CH2=CHMe > CH2=CHPh > CH2=C(Me)Ph in the Heck 
reaction. The catalytic cycle process is a currently generally accepted mechanism of Heck reaction 
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(Supplementary Fig. 2). There are four stages in this catalytic cycle, firstly, catalyst precursors of Pd(II) 
are activated to produce low coordination number Pd(0), followed by oxidative addition of activated 
palladium and haloaromatic hydrocarbons in a second stage. Translocational insertion of the alkene is 
the third stage of the Heck reaction and determines the regioselectivity of the overall reaction. During 
the final stage, the product is produced in the process of eliminating the β-hydrogen. In this step, it should 
be noted that the hydridopalladium complex is presented. However, after elimination by alkali reduction 
this complex will be regenerated.

Section S3. Detailed information about Chan-Lam coupling reaction
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Supplementary Fig. 3 The general mechanism of Chan-Lam coupling reaction 
The other example of a small data set reaction we used is the Chan-Lam coupling reactions3. These 
reactions are aromatic, alkenyl and alkylation reactions in which substrates containing NH/OH/SH 
groups are oxidatively cross-coupled with organo-boronic acid compounds in air under weak base 
conditions, catalyzed by copper acetate. The coupling process is a currently generally accepted 
mechanism of Chan-Lam coupling reaction (Supplementary Fig. 3). First, complexation of the aryl 
boronic acid and the divalent copper complex occurs to form an aryl divalent copper intermediate and a 
boronic acid. Then, the divalent copper intermediate is oxidized to a trivalent copper intermediate in the 
presence of oxygen. This intermediate undergoes reductive elimination with amine to produce the final 
coupling product and a monovalent copper complex. In addition, the generated monovalent copper 
complex is oxidized by oxygen to a divalent copper complex, completing the catalyst cycle.

Section S4. Detailed information about top-n accuracy of RFRPT 

model

Supplementary Table 1 Comparison of the Baseline and RFRPT model’s performance. 
Top-N accuracy (%)

Dataset Task

Top-1 Top-2 Top-5 Top-10

Forward reaction prediction 69.0 77.9 80.5 81.4
Baeyer-Villiger

Retrosynthesis 77.9 82.7 85.4 85.8

Heck Forward reaction prediction 73.3 77.5 79.4 79.7
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Retrosynthesis 37.6 52.0 62.9 65.9

Forward reaction prediction 65.2 71.0 72.9 74.1
Chan-Lam

Retrosynthesis 57.4 63.8 69.1 70.6

Forward reaction prediction 75.7 80.5 81.9 82.3
Baeyer-Villiger

Retrosynthesis 81.9 77.9 80.5 81.4

Forward reaction prediction 81.0 84.4 86.4 87.0
Heck

Retrosynthesis 55.2 65.3 70.2 74.9

Forward reaction prediction 83.0 86.0 86.7 87.5
Chan-Lam

Retrosynthesis 66.5 70.8 74.6 76.3

In this paper, we train 3 RFRPT models and 6 baseline models on our datasets, with results as shown in 
Supplementary Table 1.

Section S5. Detailed information about beam search
The model is autoregressive and in the last layer of the model is softmax, its output is considered 

as a vector of all words in the lexicon that should be predicted as the probability of the current output. 
We logicized each element and summed it with the result of the previous time step as the new result, 
found the candidate with the highest number N of the current result summed, and then re-entered the N 
results into the model to get the new vector and filtered it again until all the words became the ending 
identifier <end> or reached the truncation length we set (300).

Section S6. Detailed information about uncertainty metric
To assess the level of confidence of the model in the prediction, we evaluated the models separately 

using multiple evaluation metrics to validate the models following the method of Schwaller et al.4

We treated the predictions that were identical to the products reported in the patent with a 
confidence score above the threshold as true-positives (TPs), the predictions that were not identical to 
the reported products and were below the threshold as true-negatives (TNs), the predictions that were 
identical to the reported products but were below the threshold as false-negatives (FNs), and finally, the 
predictions that were not identical to the reported products but were above the threshold as false-positives 
(FPs). In addition, In addition, the fomulations of other evaluation indicators are as follows.

Accuracy: Percentage of correct samples to predicted samples:

= TP TNAcc
TP TF TN FN

uracy 
  

Precision: Percentage of correct positive sample predictions among those predicted to be positive:
TPPrecsion

TP FP



Specificity: Percentage of true negative samples among actual negative samples:

TNSpecificity
FP TN




True Positive Rate (TPR): Percentage of true positive samples among actual positive samples:
TPTPR

TP FN



False Positive Rate(FPR): Percentage of false positive samples among actual negative samples:
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FPFPR
FP TN




Matthews correlation coefficient(MCC): Measuring the similarity of the true distribution and predicted 
outcomes:

( ) ( ) ( ) ( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
  


      

Recipient operating characteristic curve (ROC) The horizontal coordinate of the recipient operating 
characteristic curve is TPR and the vertical coordinate is FPR, AUC (area under curve) is defined as the 
area enclosed with the coordinate axis under the ROC curve.

Section S7. Detailed information about hyperparameter search

We performed a hyperparametric comparison in the baseline model using the Baeyer-Villiger 
dataset, where a drop out can reduce the complex co-adaptive relationships between neurons so that the 
weight update no longer depends on the joint action of implicit nodes with fixed relationships. It can 
avoid overfitting in the training process; we perform a set of experiments with the drop out varying from 
0.1 to 0.7 . The experimental results are shown in the Supplementary Table 2, the model works best when 
the drop out is 0.3. The learning rate affects whether and when the objective function converges to a local 
minimum. We performed a set of experiments with the learning rate varying from 1e-2 to 1e-6 . The 
model works best when the leaning rate is 1e-3 as shown in the Supplementary Table 3. We chose the 
parameters of dropout 0.3 and lr 1e-3, and we used the parameters previously optimized in our lab as the 
rest of the parameters.5

Supplementary Table 2 Hyperparametric search for drop out on Baeyer-Villiger dataset 

Drop out Top-1 Accuracy

0.1 0.665

0.2 0.664

0.3 0.712

0.4 0.681

0.5 0.664

0.6 0.044

0.7 0.004

Supplementary Table 3 Hyperparametric search for learning rate on Baeyer-Villiger dataset 

Learning rate Top-1 Accuracy
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1e-1 0

1e-2 0

1e-3 0.712

1e-4 0.442

1e-5 0.106

1e-6 0.008

1e-7 0

Section S8. Detailed information about Impact of different data sizes 

on the model
As shown in Supplementary Fig 4 and Supplementary Table 4, we trained 10 baseline models, 

RFRPT and MFRPT based on different data points with Baeyer-Villiger dataset. The difference between 
the accuracy of RFRPT and that of the baseline is highest at 60% data rate, while the difference between 
MFRPT and that of the baseline is highest at 80% data rate as shown in Supplementary Fig 5 and 
Supplementary Table 5, under the Heck reaction dataset. The model exhibits lower accuracy when the 
data rate is small, which is due to the underfitting phenomenon caused by the small data rate. When the 
data rate reaches 70%, the difference between RFRPT and baseline model accuracy is highest, and 
MFRPT reaches the largest difference with baseline model accuracy at 50% data rate. As shown in 
Supplementary Fig 6 and Supplementary Table 6, under the Chan-lam reaction dataset, the same as 
before, the models show underfitting when the data rate is small. When the data rate is 70% the difference 
between RFRPT and the baseline model accuracy is the highest, while MFRPT reaches the highest 
difference with the baseline model accuracy at 60%. In the case of a fixed data set, RFRPT generalizes 
better than the baseline without underfitting, but these differences generally decrease as the dataset 
increases, depending on the type of reaction data. MFRPT is generally out of overfitting in smaller data 
points. This is because MFRPT has three data inputs at each data point; for the encoder the input data 
comes from three, and the generalization ability of MFRPT is stronger than that of the baseline model. 
Again, these gaps decrease as the input dataset increases. The above results show that MFRPT and 
RFRPT generalize better than the baseline model when the data set is small, but when the data set is large 
enough, the generalization of the baseline model is closer to the effect of our model.



7

Supplementary Fig. 4 Top-1 accuracy in baseline, RFRPT, and MFRPT models with Baeyer-
villiger dataset for different data size rates.

Supplementary Fig. 5 Top-1 accuracy in baseline, RFRPT, and MFRPT models with Heck dataset 
for different data size rates.

Supplementary Fig. 6 Top-1 accuracy in baseline, RFRPT, and MFRPT models with Chan-lam 
dataset for different data size rates.
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Supplementary Table 4 Increment of top1 accuracy of RFRPT, MFRPT at different data size 
rate with baseline on Baeyer-villiger dataset

Data Size Rate RFRPT increment MFRPT increment

0.1 0.004 -0.010

0.2 0.031 -0.018

0.3 0.026 0.133

0.4 -0.053 0.040

0.5 -0.044 0.053

0.6 0.087 0.131

0.7 0.085 0.120

0.8 0.074 0.150

0.9 0 0.057

1.0 0.009 0.045

Supplementary Table 6 Increment of top1 accuracy of RFRPT, MFRPT at different data size 
rate with baseline on Heck dataset

Data Size Rate RFRPT increment MFRPT increment

0.1 -0.005 0.015

0.2 -0.001 0.025

0.3 -0.014 0.119

0.4 0.016 0.109

0.5 -0.007 0.300

0.6 0.044 0.196

0.7 0.075 0.268

0.8 0.070 0.259

0.9 0.024 0.134

1.0 0.071 0.077
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Supplementary Table 7 Increment of top1 accuracy of RFRPT, MFRPT at different data size 
rate with baseline on Chan-Lam dataset

Data Size Rate RFRPT increment MFRPT increment

0.1 0.004 0.010

0.2 -0.014 0.032

0.3 -0.042 0.042

0.4 -0.018 0.066

0.5 0.052 0.346

0.6 0.052 0.402

0.7 0.275 0.390

0.8 0.246 0.364

0.9 0.187 0.333

1.0 0.130 0.178

Section S9. Detailed information about split data method
We used python 3.9 and sklearn module 6 to split all the data randomly, in the ratio of 8:1:1, for 

training set: validation set: testing set. The number of data sets is shown in Supplementary Table 8. All 
the splitting results are in https://github.com/qiaohaoran/MFRPT-and-RFRPT/tree/main/rawdata . 
During training, the training set was used to train the model, the validation set was used to observe the 
convergence of the model during training and to apply an early stopping strategy without taking part in 
the updating of the model parameters. After training, we input the test set into the trained model to obtain 
our results to evaluate the generalization performance of the model.

Supplementary Table 8 The split data set size in the different datasets

Dataset Train Valid Test Total

Chan-lam 4220 527 527 5274

Heck 7967 996 996 9959

Baeyer-villiger 1808 226 226 2260
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