Supporting Information

Schwann cell-matrix coated PCL-MWCNT multifunctional nanofibrous scaffolds for neural regeneration

Yas Al-Hadeethi ^{a †}, Aishwarya Nagarajan ^{b †}, Srividya Hanuman ^b, Hiba Mohammed ^c, Aakanksha M. Vetekar ^{b, d}, Goutam Thakur ^d, Le N. M. Dinh ^e, Yin Yao ^e, Mkawi, E. M ^a, Mahmoud Ali Hussein ^{f, g}, Vipul Agarwal ^{e *}, Manasa Nune ^{b *}

^a Department of Physics, Faculty of Science, King Abdelaziz University, Jeddah 21589, Kingdom of Saudi Arabia

^b Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India

^c Fondazione Novara Sviluppo, 28100, Novara, Italy

^d Department. of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India

^e Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia

^f Department of Chemistry, Faculty of Science, King Abdelaziz University, Jeddah 21589, Saudi Arabia

^g Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt

^t These authors contributed to the work equally

*Corresponding authors: agarwalvipul84@gmail.com, manasa.nune@manipal.edu

Supporting Information

Figure S1. SEM images of different scaffolds with different morphologies (random and aligned) with and without MWCNT. Scale bars – first row (50 μ m) and second row (3 μ m).

Samples	Left angle (°)	Right angle (°)
R-PCL	130.8 ± 3.7	132.4 ± 3.2
R-PCL-MWCNT	137.3 ± 3.2	135.7 ± 4.1
R-PCL+ ACM	42.0 ± 3.2	41.6 ± 1.06
R-PCL-MWCNT+ACM	53.9 ± 1.7	54 ± 2.2
A-PCL	132.7 ± 0.4	132.2 ± 1.6
A-PCL-MWCNT	129.6 ± 2.1	129.2 ± 3.3
A-PCL+ACM	39.4 ± 2.4	37.2 ± 2.8
A-PCL-MWCNT+ACM	50.1 ± 0.6	53.6 ± 1.2

Table S1. Static water contact angle measured on different scaffolds with different morphologies (random and aligned) with and without MWCNT and ACM coating. Data is presented as average \pm standard deviation (n=3).

Table S2. Mechanical data in tensile strength and elongation at break of different scaffolds with different morphologies (random and aligned) with and without MWCNT. Data is presented as average \pm standard deviation (n=3).

Samples	Tensile strength (MPa)	Elongation at break (%)
R-PCL	3.31 ± 1.75	131.05 ± 21.66
R-PCL-MWCNT	6.10 ± 1.70	145.37 ± 33.62
A-PCL	15.73 ± 5.74	46.74 ± 3.38
A-PCL-MWCNT	5.20 ± 2.40	72.44 ± 13.39

Supporting Information

Figure S2. Cytochemical staining of different scaffolds with and without MWCNT and ACM coating showing different components of ACM.