Electronic Supplementary Information (ESI)

Unusual enhancement in efficiency of DSSC upon modifying photoanode with reduced graphene oxide

Sujit Bhand, Plawan Kumar Jha and Nirmalya Ballav*

Department of Chemistry, Indian Institute of Science Education and Research (IISER),

Dr. Homi Bhabha Road, Pashan, Pune 411008, India

*E-mail: nballav@iiserpune.ac.in

Table of contents

Sr	Name	Page
No		No
1	Table S1 Literature survey of different materials used for enhancement in	S3
	efficiencies of DSSC	
2	Figure S1 FESEM images of spin coated rGO1 and rGO2 on FTO after calcination	S5
	at 500 $^{\mathrm{o}}\mathrm{C}$ in open air respectively (Calcination was carried out to check	
	sustainability of rGO materials at 500 $^{ m oC}$ which is used for photoanode	
	fabrication) a) and c) shows particle dispersed of rGO1 and rGO2 respectively	
	and b) and d) are zoomed in images for the same.	
3	Figure S2 a) Raman spectra of rGO1 and rGO2 where RT indicate before	S6
	heating and HT after heating calcination in at at 500 $^{ m QC}$ in open air respectively.	
	b) Absorbance spectra of blank FTO (D1), TiCl $_4$ treated (D2), spin coated rGO1	
	(D3) and rGO2 (D4).	
4	Figure S3 Cross-sectional FESEM image of the photoanode of D3 device	S7
5	Figure S4 FESEM image of the photoanode of D3 device	S8
6	Figure S5 % PCE values of D1, D2, D3 and D4 (10 devices each)	S9
7	Figure S6 Solid-state UV-vis spectra of photoanodes of D1, D2, D3 and D4	S10
8	Figure S7 UV-vis spectra of de-absorbed dye from photoanodes of D1, D2, D3	S11
	and D4	
9	Reference	S12

 Table S1 Literature survey of different materials used for enhancement in efficiencies of DSSC

Sr.	Materials used	PCE	Features of Materials used to improve	Ref.
No.	for Photoanode	(%)	efficiency in DSSC	
1	TiO ₂	5.01	Active material used- 2D Graphene	1
			oxide	
			Active material preparation method- Craphite, with KMpO, as reducing	
			Graphite with KivinO ₄ as reducing	
	Granhanaavida	6.07	agent	
	in TiO	0.97	Anode Tabrication- 0.6 % weight mixed during TiO_pasts preparation	
			Marphology 2D	
			 INICIPIIOIOSY- 2D 2D meterials is more hepoficial when 	
			 2D Indendis is infore beneficial when compared with 1D. 	
2	TiO	5 79	Active material used PGO	2
2		5.78	Active material preparation method-	
			single-layer graphene oxide (SGO) to	
			RGO by heat treatment	
			Anode fabrication- 3 % weight mixed	
	RGO in TiO ₂	7.49	during TiO ₂ paste preparation	
			 Morphology- not explained 	
3	TiO ₂	0.32	 Active material used- Graphene 	3
			sheet	
			 Active material preparation method- 	
			Graphite to GO and further exploited	
	Graphene	1.68	to Graphene sheets via sonication	
	sheets in TiO ₂		 Anode fabrication- 0.01-0.05 mg/mL 	
			mixed in TiO ₂ suspension	
			Morphology- single sheets	
4	TiO ₂	8.45	Active material used- Graphene	4
			Purchased	
			Active material preparation method-	
			NA Anodo fobrication 0.1% Graphono in	
	Graphene in	9.45	 Anode rabilication- 0.1% Graphene in mixed in TiO, suspension 	
	TiO ₂		 Morphology- agglomerate of 	
			Granhene and TiO ₂	
5	ZnO	2.31	Active material used- Graphene	5
			oxide	
			Active material preparation method-	
	Grapheneoxide	3.19	Graphite to GO by modified Hummers	
	in ZnO		method	
			Anode fabrication- 1.2 wt % of	
			graphene scaffolds incorporated into	
			ZnO hierarchically structured	
			nanoparticle (HSN) (In situ	
			generation)	
6	TiO ₂	4.2	Active material used- rGO	6
			Active material preparation method-	
			Graphite to GO by modified Hummers	
			methods	
	rGO in TiO ₂	5.5	Anode fabrication- 0.75 wt% mixed	
	TO	4.54	during IIO ₂ paste preparation	7
/		4.54	Active material used- multi-walled	,
			Carbon nanolubes	
			Graphite to multi-walled carbon	
	multi-walled	6.11	nanotubes by Staudenmaier's method	
	carbon		followed by heat treatment	
	nanotubes in		 Anode fabrication- composite of 	
	TiO ₂		multi-walled carbon nanotubes pastes	
			were prepared for doctoral blading	
			TiO ₂ particle	
8	TiO ₂	1.79	Active material used- Graphene	8
			oxide	
			Active material preparation method-	
	Grapheneoxide	2.78	Modified Hummers methods	
	in TiO ₂		Anode fabrication- 0.21 wt % GO	

			mixed with TiO ₂ particle	
9	TiO ₂ Fibers	6.3	 Active material-Graphene Purchased Active material preparation method- NA Anode fabrication- Electrospinning of conductive TiO₂-graphene composites in combination with PVP as a carrier solution resulting in well-defined and structurally stable fibers. 	9
	Graphene in TiO ₂ Fibers	7.6		
10	TiO ₂	6.08	Active material used- rGO Active material preparation method- Chemically reduced graphene oxide	Present work
	rGO spin coated at Interface	8.19	 Anode fabrication- Simple spin coating of RGO at FTO/TiO₂ interface 	
11	TiO ₂	6.08	Active material used- rGO Active material preparation method- Chemically reduced graphene oxide	Present work
	rGOspincoated at Interface	8.03	• Anode fabrication- Simple spin coating of RGO at FTO/ TiO ₂ interface	

Figure S1 FESEM images of spin coated rGO1 (a) and rGO2 (c) on FTO after calcination at 500 °C in open air whereby rGO particles are clearly visible with retention of morphology (zoomed-in FESEM images are presented b and d). Calcination was carried out to check the sustainability of rGO materials in photoanode fabrication process.

Figure S2 (a) Raman spectra of rGO1 and rGO2 where RT indicate before heating and HT after heating at 500 °C in open air, respectively. (b) Absorbance spectra of blank FTO (D1), TiCl₄ treated (D2), spin coated rGO1 (D3) and rGO2 (D4) systems.

Figure S3 Cross-sectional FESEM image of the photoanode of the D3 device.

Figure S4 FESEM image of the photoanode of the D3 device.

Figure S5 % PCE values of each 10 devices of D1, D2, D3 and D4.

Figure S6 Solid-state UV-vis spectra of photoanodes of D1, D2, D3 and D4 devices.

Figure S7 (a) UV-vis spectra of de-absorbed dye from photoanodes of D1, D2, D3 and D4 devices. (b) Table showing the amount of dye loading in D1, D2, D3 and D4 devices.

References

- 1 N. Yang, J. Zhai, D. Wang, Y. Chen and L. Jiang, *ACS Nano*, 2010, **4**, 887-894.
- 2 Y. Kusumawati, M. A. Martoprawiro and T. Pauporté, J. Phys. Chem. C, 2014, **118**, 9974-9981.
- 3 Y.-B. Tang, C.-S. Lee, J. Xu, Z.-T. Liu, Z.-H. Chen, Z. He, Y.-L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H.-M. Cheng, W.-J. Zhang, I. Bello and S.-T. Lee, *ACS Nano*, 2010, **4**, 3482-3488.
- 4 U. Mehmood, S. H. A. Ahmad, A. U. H. Khan and A. A. Qaiser, *Solar Ener.*, 2018, **170**, 47-55.
- 5 F. Xu, J. Chen, X. Wu, Y. Zhang, Y. Wang, J. Sun, H. Bi, W. Lei, Y. Ni and L. Sun, *J. Phys. Chem. C*, 2013, **117**, 8619-8627.
- 6 W. Shu, Y. Liu, Z. Peng, K. Chen, C. Zhang and W. Chen, J. Allo. Compds., 2013, 563, 229-233.
- 7 M.-Y. Yen, M.-C. Hsiao, S.-H. Liao, P.-I. Liu, H.-M. Tsai, C.-C. M. Ma, N.-W. Pu and M.-D. Ger, *Carbon*, 2011, **49**, 3597-3606.
- 8 H. Wang, S. L. Leonard and Y. H. Hu, *Indus. Engn. Chem. Res.*, 2012, **51**, 10613-10620.
- 9 A. Anish Madhavan, S. Kalluri, D. K Chacko, T. A. Arun, S. Nagarajan, K. R. V. Subramanian, A. Sreekumaran Nair, S. V. Nair and A. Balakrishnan, *RSC Adv.*, 2012, **2**, 13032-13037.