Supporting Information for

Study on the long time aging behavior for MAPbI₃: From experimental to first-principle simulation

Yan Li^{a, e,*}, Yu-Jing Dong^{b, c}, Hong He^a, Xue-Lian Chen^a, Hao Jiang^a, Yu Jia^{b, d,*} ^aSchool of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, 710065, China ^bKey Laboratory for Special Functional Materials of Ministry of Education, and School of Materials, Center for Topological Functional Materials, and School of Physics and Electronic, Henan University, Kaifeng 475001, China ^cSchool of Science and Technology, Xinyang College, Xinyang 464000, China ^dInternational Laboratory for Quantum Functional Materials of Henan, and School of Physics, Zhengzhou University, Zhengzhou 450001, China ^eState Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710065, China E-mail address: yli@ xsyu.edu.cn and jiayu@henu.edu.cn

Fig. S1 MAPbI₃ films aged by AM1.5 illumination in atmospheric environment: (a) XRD patterns, (b) UV-vis absorption spectra, (c) steady-state PL spectra and (d) photos before aging and (e) after aging for 6 hs, where \mathbf{v} is the (110) of MAPbI₃ and $\mathbf{\bullet}$ (001) of the PbI₂

Fig. S2 MAPbI₃ film aged by AM1.5 illumination at N₂ environment: (a) XRD patterns, (b) UV-vis absorption spectra, (c) steady-state PL spectra and (d) photos before aging and (e) after aging for 6 hs, where \checkmark is the (110) of MAPbI₃ and \blacklozenge (001) of the PbI₂.

Fig. S3 MAPbI₃ film aged by ultraviolet light in atmospheric environment: (a) XRD patterns, (b) UV-vis absorption spectra, (c) steady-state PL spectra and (d) photos before aging and (e) after aging for 6 hs, where \mathbf{v} is the (110) of MAPbI₃ and $\mathbf{\diamond}$ (001) of the PbI₂.

Fig. S4 The phase diagram of the stable MAPbI₃.

System	Energy (eV)	System	Energy (eV)
I ₂ (gas)	-2.657	C (graphite)	-9.309
Pb(metal)	-3.806	N ₂ (molecule)	-8.314
MAI(solid phase)	-42.797	H ₂ (molecule)	-3.383
PbI ₂ (solid phase)	-9.2539	MA	-37.92
MAPbI ₃	-52.019		

Table. S1 The total energies of possible competitive phases.

Table S2 The element chemical potential under different chemical conditions in thestable MAPbI $_3$ phase.

I-poor/Pb-rich	I-rich/Pb-poor	
Point A	Point C	
$\mu_{Pb}=0 \text{ eV}$	μ_{Pb} =-3.52 eV	
μ _I =-1.76 eV	$\mu_I=0 \text{ eV}$	
μ _{MA} =-1.03 eV	μ _{MA} =-2.79 eV	

In the calculated surface defect properties of $MAPbI_3$, the defect formation energies and defect energy levels of different surface defects were calculated to identify types of surface deep level defects. The types of surface defects include vacancies (V_{MA} , V_{Pb} , V_I), interstitials (MA_i , Pb_i , I_i) and anti-site substitutions (MA_I , I_{MA} , Pb_I , I_{Pb} , MA_{Pb} , Pb_{MA} , A_B means A on B site).

Defect formation energies were calculated by $\Delta H = E_D - E_P - \sum_i n_i (\mu_i + \mu_j)$. Where E_D and E_P are the energies of slab containing defect and prefect, n_i represents the lose atom (+) or surplus atom (-) number, μ_i and μ_j are their chemical potential, which can be expressed as $\mu_i = \Delta \mu_i + \mu_i^{solid}$, μ_i^{solid} is the chemical potential of the relevant elemental solid. The defect formation energy is related to the constituent element. The chemical potentials of different conditions and stable MAPbI₃ without the formation of other competing phases can be obtained from the phase diagram meeting the following conditions

$$\mu_{\rm MA} + \mu_{\rm I} < \Delta H \, (\rm MAI) = -3.55 eV \qquad eqn.S1$$

$$\mu_{\rm Pb} + 2\mu_{\rm I} < \Delta H \left(\rm PbI_2 \right) = -2.79 eV \qquad \text{eqn.S2}$$

$$\mu_{\rm MA} + \mu_{\rm Pb} + 3\mu_{\rm I} = \Delta H \left(\rm MAPbI_3 \right) = -6.31 eV \qquad eqn.S3$$

$$\mu_{\rm MA} < 0$$
 eqn.S4

$$\mu_{\rm Pb} < 0$$
 eqn.S5

$$\mu_{\rm I} < 0$$
 eqn.S6

Where $\Delta \mu_{MA}$, $\Delta \mu_{Pb}$, $\Delta \mu_{I}$ are the chemical potentials of MA, Pb, I and Br, respectively, $\Delta H(MAI)$, $\Delta H(PbI_2)$ and $\Delta H(MAPbI_3)$ are the formation enthalpies of MAI, PbI₂ and MAPbI₃, respectively.