Supporting Information

Role of O–H…O/S conventional hydrogen bonds in considerable C_{sp2}–H blue-shift in the binary systems of acetaldehyde and thioacetaldehyde with the substituted carboxylic and thiocarboxylic acids

Nguyen Truong An¹, Nguyen Thi Duong¹, Nguyen Ngoc Tri,^{1,2} Nguyen Tien Trung^{1,2*}

¹Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, Vietnam, ²Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University, Quy Nhon, Vietnam

* Corresponding author: Email: <u>nguyentientrung@qnu.edu.vn</u>

Table S1. Intermolecular parameters (r: distances in \mathring{A} , θ : angles in °, q: NBO charge in *e*) in the binary systems formed between CH₃CHZ and RCZOH (R = CH₃, H, F; Z = O, S) at MP2/6–311++G(3df,2pd)

Complex	$\mathbf{r}(\mathbf{H}\cdots\mathbf{Z})(\mathbf{A})$		θ (°)			q (<i>e</i>)			
	0–H…Z7	C _{sp2} –H···Z2	∠0-H-Z	∠C _{sp2} -H-Z	Z2	H ^{a)}	Z 7	H _b)	
CH ₃ O–O	1.747	2.337	179.5	130.3	-0.621	0.502	-0.546	0.139	
CH ₃ S–O	1.720	2.826	170.2	128.2	-0.119	0.507	-0.544	0.128	
НО-О	1.727	2.359	179.7	130.4	-0.607	0.500	-0.547	0.138	
HS-O	1.706	2.837	171.5	129.1	-0.115	0.502	-0.545	0.127	
FO–O	1.666	2.389	179.0	127.9	-0.615	0.510	-0.550	0.138	
FS-O	1.639	2.846	172.2	127.5	-0.148	0.516	-0.547	0.131	
CH ₃ O–S	2.265	2.233	177.9	146.7	-0.613	0.482	0.067	0.207	
CH ₃ S–S	2.246	2.718	167.7	145.1	-0.098	0.485	0.082	0.195	
HO–S	2.242	2.252	178.8	146.8	-0.598	0.478	0.070	0.205	
HS-S	2.228	2.722	169.2	150.0	-0.093	0.478	0.084	0.194	
FO–S	2.180	2.282	179.8	143.6	-0.607	0.486	0.079	0.205	
FS–S	2.164	2.741	170.1	143.7	-0.126	0.490	0.093	0.195	

^a)For H of –OH group of RCZOH in the complexes; ^b)For H of –CHZ group of CH₃CHZ in the complexes

Table S2. Selected parameters at the BCPs of intermolecular contacts at MP2/6-311++G(3df,2pd)

Complex	$\rho(\mathbf{r}_{\mathrm{C}})$, in <i>au</i>		$\nabla^2 \rho(\mathbf{r}_{\mathrm{C}})$, in <i>au</i>		$H(r_C)^{a)}$, in au		$\mathbf{E}_{\mathbf{HB}}^{\mathbf{b}}$, in <i>kJ.mol</i> ⁻¹		Comparison
Complex	О– Н…Z7	C _{sp2} –H···Z2	(1)	(2)	(1)	(2)	(1)	(2)	values
СН ₃ О–О	0.0405	0.0130	0.097	0.045	-0.0073	0.0012	-51.0	-11.4	2.1(1)
CH ₃ S–O	0.0428	0.0102	0.100	0.027	-0.0084	0.0008	-55.0	-6.8	2.2(1)
НО-О	0.0427	0.0125	0.098	0.042	-0.0084	0.0011	-54.5	-10.9	2.1 ⁽¹⁾
HS-O	0.0444	0.0099	0.101	0.027	-0.0094	0.0008	-57.7	-6.5	2.2 ⁽¹⁾
FO–O	0.0494	0.0115	0.103	0.040	-0.0124	0.0012	-66.6	-10.2	2.2 ⁽¹⁾
FS-O	0.0521	0.0096	0.105	0.027	-0.0142	0.0009	-71.8	-6.4	2.3 ⁽¹⁾
CH ₃ O–S	0.0264	0.0150	0.046	0.053	-0.0034	0.0015	-23.9	-13.5	1.7 ⁽²⁾
CH ₃ S–S	0.0276	0.0118	0.046	0.031	-0.0039	0.0008	-25.2	-8.1	1.7 ⁽²⁾
HO–S	0.0278	0.0145	0.046	0.051	-0.0040	0.0014	-25.6	-13.0	1.6 ⁽²⁾
HS-S	0.0283	0.0121	0.046	0.030	-0.0040	0.0007	-25.7	-8.1	1.7 ⁽²⁾
FO–S	0.0319	0.0133	0.045	0.048	-0.0060	0.0015	-30.5	-11.9	1.6 ⁽²⁾
FS-S	0.0330	0.0110	0.044	0.030	-0.0065	0.0009	-31.7	-7.6	1.6 ⁽²⁾

^{*a*)} the total electron energy density; ^{*b*}) individual energy of each hydrogen bond; ⁽¹⁾for O–H···Z7 and ⁽²⁾for C_{sp2} –H···Z2 E_{HB} in red for O–H···O7, E_{HB} in blue for O–H···S7, E_{HB} in yellow highlighted for C_{sp2} –H···O2 and E_{HB} in normal for C_{sp2} –H···S7

Table S3. Summary of	f stretching fre	equency changes of	C–H bonds involving	hvdrogen bon	ds in the complexes
	0		0	1 0	1

Complexes	Level of theory/Experiment	$\Delta \nu (C_{sp3}-H) (cm^{-1})$	Ref	
CH ₃ CHO…1H ₂ O/CH ₃ CHO…2H ₂ O		6/-11		
CH ₂ FCHO···1H ₂ O	D2I VD/(211+C(1))	10;13	1	
CH ₂ FCHO···2H ₂ O	B3L1P/0-311++G(a,p)	-19;-21	1	
CH ₃ CFO…1H ₂ O/CH ₃ CFO…2H ₂ O		-2/-23		
CH ₃ CHS…1H ₂ O		16.9		
CH ₃ CHS···2H ₂ O	MP2/aug-cc-pVDZ	26.7	2	
CH ₃ CHS···3H ₂ O		15.6; -23.1		
(CH ₃ CHO) ₂	M062X/6-311++G(3df,3pd)	-16, -14, -8	3	
CHX_3 ···HNO (X = F, Cl, Br)	MP2/6-311++G(d,p)	7÷41	4	
F ₃ CH···H ₂ O	Exp.	20.3; 32.3	5	
Complexes	Level of theory/Experiment	$\Delta \nu (C_{sp2}-H) (cm^{-1})$	Ref	
RCHO…1H ₂ O	P3I VD /6 211++ $C(dn)$	28 ± 53	6	
$(R = H, F, CH_3, CH_2F, C_2H_5)$	D5L11/0-511++O(d,p)	20 · 33		
CH ₃ CHO…1H ₂ O/CH ₃ CHO…2H ₂ O	P2I VD/6 211++ $C(d n)$	52/93	1	
CH ₂ FCHO···1H ₂ O/ CH ₂ FCHO···2H ₂ O	D5L11/0-511++O(d,p)	44/61		
$CH_3CHS\cdots 1H_2O$		24.0		
CH_3CHS ···2 H_2O	MP2/aug-cc-pVDZ	33.1	2	
CH ₃ CHS····3H ₂ O		62.2		
$XCHO$ ···1 H_2Z		$2.9 \div 52$		
XCHO···2H ₂ O	MP2/aug-cc-pVDZ	$4.0 \div 92.3$	7	
$(X=H, F, Cl, Br, CH_3; Z=O, S)$				
RCHZ…HCOOH	MP2/aug-cc-nVDZ	81÷96	8	
$(R=H, F, Cl, Br, CH_3, NH_2; Z=O, S)$				
RCHO…R'OH (R = NH_2 , CF_3 , CH_3O ,	MP2/cc-nVTZ	$23.01 \div 92.69$	9	
$CN, H; R' = H, CH_3, NH_2, C(O)H)$		25.01 ,2.0,		
	M062X/6-311++G(3df,3pd)	50	3	
$(CH_3CHO)_2$	$\begin{array}{cccc} B3LYP/6-311++G(d,p) & 28 \div 53 \\ CHO\cdots 2H_2O & B3LYP/6-311++G(d,p) & \frac{52/93}{44/61} \\ & & & & & & & & & & & & & & & & & & $	10		
	MP2/6-31+G(d)	56.3; 56.6	11	
HCHO-NH ₂ OH	Exp.	14.6	12	
CH ₃ COCHO-NH ₂ OH	1.	16.3		
CHOCHO···H ₂ O ₂	Exp.	28.9	13	
CHOCHO···H ₂ O	Exp.	2.5	14	
CHOCHO···H ₂ O	Exp.	14.7	14	
4-fluorobenzaldehyde dimer	Exp.		15	
2-methoxybenzaldehyde dimer	Exp.	21	16	
Complexes	Level of theory	$\Delta v(C_{sp}-H)(cm^{-1})$	Ref	
$C_2HX\cdots C_6H_6$	MP2/aug-cc-pVDZ	-15.7 ÷ -24.9	17	
$(\Lambda = \Pi, \Gamma, Cl, Br, CH_3, NH_2)$		_21		
C ₂ H ₂ C ₂ H ₂ C ₂ H ₂ ····HCN		-61		
C ₂ H ₂ ····C ₂ H ₂	MP2/aug-cc-pVTZ	-17	18	
$C_{6}H_{6}$ HCN		-50		

1. A. K. Chandra and T. Zeegers-Huyskens, J. At. Mol. Opt. Phys., 2012, 2012, e754879.

2. N. T. T. Cuc, H. Q. Dai, N. T. A. Nhung, N. P. Hung and N. T. Trung, Vietnam J. Chem., 2019, 57, 425-432.

3. T. S. Thakur, M. T. Kirchner, D. Bläser, R. Boese and G. R. Desiraju, Phys. Chem. Chem. Phys., 2011, 13, 14076–14091.

- 4. N. T. Trung, T. T. Hue and M. T. Nguyen, Phys. Chem. Chem. Phys., 2009, 11, 926-933.
- 5. C. D. Keefe and M. Isenor, J. Phys. Chem. A, 2008, 112, 3127-3132.
- 6. A. K. Chandra and T. Zeegers-Huyskens, J. Comput. Chem., 2012, 33, 1131-1141.
- 7. N. T. T. Cuc, C.-T. D. Phan, N. T. A. Nhung, M. T. Nguyen, N. T. Trung and V. T. Ngan, J. Phys. Chem. A, 2021, 125, 10291–10302.
- 8. N. T. Trung, P. N. Khanh, A. J. P. Carvalho and M. T. Nguyen, J. Comput. Chem., 2019, 40, 1387–1400.
- 9. D. Kaur and R. Kaur, J. Chem. Sci., 2015, 127, 1299-1313.
- 10. A. Kovács, A. Szabó, D. Nemcsok and I. Hargittai, J. Phys. Chem. A, 2002, 106, 5671-5678.
- 11. Y. Yang and W. Zhang, Acta Chim. Sin., 2009, 67, 599–606.
- 12. B. Golec, M. Sałdyka and Z. Mielke, Mol. Basel Switz., 2021, 26, 1144.
- 13. M. Mucha and Z. Mielke, Chem. Phys. Lett., 2009, 482, 87–92.
- 14. M. Mucha and Z. Mielke, J. Phys. Chem. A, 2007, 111, 2398–2406.
- 15. P. J. A. Ribeiro-Claro, M. P. M. Marques and A. M. Amado, ChemPhysChem, 2002, 3, 599-606.
- 16. P. J. A. Ribeiro-Claro, M. G. B. Drew and V. Félix, Chem. Phys. Lett., 2002, 356, 318-324.
- 17. P. Khanh, V. Ngan, N. Man, N. T. Ai Nhung, A. Chandra and N. Trung, RSC Adv., 2016, 6, 106662–106670.
- 18. P. Jantimapornkij, P. Jundee, N. Uttamapinant, S. Pianwanit and A. Karpfen, Comput. Theor. Chem., 2012, 999, 231-238.

Figure. S1. Topological geometries and stable structures of complexes plotted at MP2/6-311++G(3df,2pd) (values of distance in \hat{A})

(isovalue = 0.002 au) Figure. S2. Molecular electrostatic potential (in *kcal.mol*⁻¹) of the CH₃CHZ and RCZOH (R = CH₃, H, F; Z = O, S) at MP2/6-311++G(3df,2pd) level

Figure. S3. Relationship of the interaction energies of the investigated complexes for CH₃CHO-complexes (a) and for CH₃CHS-complexes (b) with electrostatic potential of H atom in monomers acting as proton donor at MP2/6-311++G(3df,2pd) level.

Figure. S4. Diagram for contribution percentage of different energy components into total stabilization energy of the complexes for RCZOH…CH₃CHZ, with R = CH₃, H, F; Z = O, S

Figure. S5a. NCI isosurface and 2D-plots of reduced density gradient (RDG) versus the electron density multiplied by the sign of the second Hessian eigenvalue $(sign(\lambda_2)\rho(r_c))$ for **RZ-O** complexes, with R= CH₃, H, F; and Z = O, S. (*The surfaces are colored on a blue-green-red scale according to the values of sign*(λ_2) $\rho(r_c)$ ranging from -0.05 to 0.05 au)

Figure. S5b. NCI isosurface and 2D-plots of reduced density gradient (RDG) versus the electron density multiplied by the sign of the second Hessian eigenvalue (sign(λ_2) ρ (r_c)) for **RZ-S** complexes, with R= CH₃, H, F; and Z = O, S (*The surfaces are colored on a blue-green-red scale according to the values of sign*(λ_2) ρ (r_c) ranging from -0.05 to 0.05 au)

Figure. S6. The linear correlation of $\Delta v(C_{sp2}$ -H) (in cm⁻¹) versus DPE(C_{sp2} -H) (in kJ.mol⁻¹) of CH₃CHZ and PA(O) (in kJ.mol⁻¹) of RCZOH

Figure. S7. The linear correlation of $\Delta \sigma^*(C_{sp2}$ -H) (in electron) versus intermolecular hyperconjugative interaction energies (in kJ.mol⁻¹) and changes of intramolecular hyperconjugative interaction energies (7*E_{inter} + ΔE_{intra}) (in kJ.mol⁻¹) for the complexes