Base-promoted high efficient synthesis of nitrile-substituted cyclopropanes via Michael-initiated ring closure

Min Ye,* Fan Xu, Yun Bai, Fanglian Zhang, Wenjia Wang, Yiping Qian and Zhengwang Chen*

Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, PR China.

Supporting Information List of Contents

A. General method	S2
B. Preparation of starting materials	S2
C. General procedure for the synthesis of cyclopropane-1,2-dicarbonitriles	S2
D. Analytical data	S3
E. Reference	S20
F. Copies of ¹ H and ¹³ C NMR spectra	S21
G. X-ray crystallographic data	

A. General method

Melting points were investigated using a melting point instrument and are uncorrected. ¹H and ¹³C NMR spectra were obtained on a 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively, chloroform is solvent with TMS as the internal standard unless otherwise noted. High resolution mass spectra (HRMS) (TOF) were measured using an electrospray ionization (ESI) mass spectrometry. Silica gel (300-400 mesh) was used for flash column chromatograph, eluting (unless otherwise stated) with ethyl acetate/petroleum ether (PE) (60-90 °C) mixture.

B. Preparation of starting materials

Method: Following a known procedure,^[1] substituted 2-bromo-3-arylacrylonitriles were synthesized. All are known compounds and its spectral data were in good with the corresponding literature vulues.

To a solution of cinnamonitrile A' (5 mmol) in DCM (10 mL) was added Br₂ (0.96 g, 6 mmol, 1.2 equiv) at 0 °C. The reaction mixture was stirred for 15 min, followed by the addition of Et₃N (1.2 mL, 8.5 mmol, 1.7 equiv). The resulting mixture was stirred 2 h at 0 °C, then the solution was diluted with DCM and washed with a 10% Na₂SO₃ solution, H₂O and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated to yield orange oil. The crude residue was purified by flash chromatography (PE/EA 30:1) to afford desired product 1.

C. General procedure for the synthesis of cyclopropane-1,2-

dicarbonitriles

A mixture of 2-arylacetonitrile (0.2 mmol), Cs_2CO_3 (98 mg, 1.5 eq), and 2-bromo-3-arylacrylonitrile (0.2 mmol) in CH₃CN (1.0 mL) was stirred in a preheated oil bath at 25 °C for 12 h in a sealed tube under air. After the reaction was finished, water (5 mL) was added and the solution was extracted with ethyl acetate (3×5 mL), and the combined extract was dried with anhydrous MgSO₄. Solvent was removed, and the residue was separated by column chromatography to give the pure sample.

D. Analytical data

3-phenyl-1-(pyridin-2-yl)cyclopropane-1,2-dicarbonitrile (3a)

Cis isomer: Yellow solid; mp = 138-140 °C; $R_f = 0.41$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 8.52 (d, J = 4.3 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.78 (t, J = 7.7 Hz, 1H), 7.58 (d, J = 7.2 Hz, 2H), 7.42 (dt, J = 19.1, 6.8 Hz, 3H), 7.29 (dd, J = 7.1, 5.0 Hz, 1H), 3.61 (d, J = 9.2 Hz, 1H), 3.30 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 149.8, 149.7, 137.3, 130.3, 129.0, 128.8, 128.7, 123.5, 121.4, 115.3, 114.7, 37.4, 29.8, 21.0.

Trans isomer: Yellow solid; mp = 128-130 °C; $R_f = 0.51$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.67$ (d, J = 4.7 Hz, 1H), 7.85 – 7.78 (m, 2H), 7.46 – 7.40 (m, 3H), 7.38 – 7.32 (m, 3H), 4.37 (d, J = 7.7 Hz, 1H), 3.03 (d, J = 7.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.3$, 148.3, 137.2, 131.3, 128.8, 128.7, 127.9, 123.7, 122.6, 116.3, 114.5, 35.4, 30.0, 21.0. HRMS (ESI): calcd. for C₁₆H₁₂N₃ [M + H]⁺ 246.1026, found 246.1028.

3-phenyl-1-(pyridin-3-yl)cyclopropane-1,2-dicarbonitrile (3b)

Cis isomer: Yellow liquid; $R_f = 0.32$ (petroleum ether / ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.75 - 8.64$ (m, 2H), 7.79 (ddd, J = 8.0, 2.5, 1.6 Hz, 1H), 7.57 (d, J = 7.1 Hz, 2H), 7.50 - 7.38 (m, 4H), 3.31 (d, J = 9.2 Hz, 1H), 2.76 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 150.7, 147.8, 147.8, 134.7, 129.4, 129.4, 129.2, 129.2, 129.1, 129.1, 129.0, 124.0, 115.1, 114.1, 35.4, 27.2, 20.4.$

Trans isomer: White solid; mp = 166-168 °C; $R_f = 0.32$ (petroleum ether / ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.67$ (d, J = 4.7 Hz, 1H), 7.85 – 7.78 (m, 2H), 7.46 – 7.40 (m, 3H), 7.38 – 7.32 (m, 3H), 4.37 (d, J = 7.7 Hz, 1H), 3.03 (d, J = 7.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.0$, 149.6, 136.1, 130.4, 129.3, 129.2, 127.9, 127.9, 127.9, 126.8, 123.9, 116.1, 114.8, 35.4, 26.8, 19.3. HRMS (ESI): calcd. for C₁₆H₁₂N₃ [M + H]⁺ 246.1026, found 246.1026.

3-phenyl-1-(pyridin-2-yl)cyclopropane-1,2-dicarbonitrile (3c)

Cis isomer: Yellow solid; mp = 156-158 °C; $R_f = 0.62$ (petroleum ether / ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ = 8.72 (d, J = 6.0 Hz, 2H), 7.54 (dd, J = 7.4, 1.3 Hz, 2H), 7.50 – 7.42 (m, 3H), 7.33 (dd, J = 4.6, 1.6 Hz, 2H), 3.32 (d, J = 9.3 Hz, 1H), 2.81 (d, J = 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 151.0, 141.6, 129.5, 129.3, 129.2, 129.1, 120.1, 114.5, 113.8, 36.7, 28.5, 21.4.

Trans isomer: Yellow solid; mp = 145-147 °C; $R_f = 0.32$ (petroleum ether / ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.76$ (d, J = 5.8 Hz, 2H), 7.46 (ddd, J = 11.2, 4.7, 2.8 Hz, 5H), 7.37 – 7.33 (m, 2H), 3.60 (d, J = 7.4 Hz, 1H), 3.05 (d, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.8$, 139.0, 130.2, 129.5, 129.3, 127.9, 122.0, 115.6, 114.3, 77.3, 77.0, 76.7, 35.9, 28.4, 20.4. HRMS (ESI): calcd. for C₁₆H₁₂N₃ [M + H]⁺ 246.1026, found 246.1026.

1-(5-methylpyridin-2-yl)-3-phenylcyclopropane-1,2-dicarbonitrile (3d)

Cis isomer: White solid; mp = 152-154 °C; $R_f = 0.48$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.35$ (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.62 – 7.54 (m, 3H), 7.48 – 7.39 (m, 3H), 3.57 (d, J = 9.2 Hz, 1H), 3.25 (d, J = 9.2 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 150.3$, 147.2, 137.8, 133.5, 130.5, 129.1, 129.0, 128.9, 121.1, 115.5, 114.9, 37.4, 29.7, 21.0, 18.1.

Trans isomer: Pink solid; mp = 149-151 °C; $R_f = 0.54$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.49$ (dd, J = 1.2, 0.6 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.62 (dd, J = 8.0, 1.6 Hz, 1H), 7.46 – 7.39 (m, 3H), 7.37 – 7.34 (m, 2H), 4.35 (d, J = 7.6 Hz, 1H), 2.96 (d, J = 7.6 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.9$, 145.5, 137.8, 133.8, 131.5, 129.0, 128.9, 128.0, 122.3, 116.6, 114.7, 35.2, 29.9, 21.1, 18.1.

HRMS (ESI): calcd. for $C_{17}H_{14}N_3 [M + H]^+ 260.1182$, found 260.1181.

1-(5-methoxypyridin-2-yl)-3-phenylcyclopropane-1,2-dicarbonitrile (3e)

Cis isomer: White solid; mp = 112-114 °C; $R_f = 0.33$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 8.20 (d, J = 2.8 Hz, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.55 (d, J = 7.2 Hz, 2H), 7.48 – 7.39 (m, 3H), 7.28 (dd, J = 8.7, 2.9 Hz, 1H), 3.89 (s, 3H), 3.54 (d, J = 9.2 Hz, 1H), 3.19 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 155.8, 141.7, 138.1, 130.6, 129.1, 129.0, 128.9, 122.0, 121.0, 115.7, 114.9, 55.9, 37.1, 29.4, 20.9.

Trans isomer: Yellow solid; mp = 147-149 °C; $R_f = 0.41$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.34$ (d, J = 2.8 Hz, 1H), 7.74 (d, J = 8.6 Hz, 1H), 7.42 (tdd, J = 6.7, 4.5, 2.5 Hz, 3H), 7.37 – 7.33 (m, 2H), 7.30 (dd, J = 8.7, 2.9 Hz, 1H), 4.30 (d, J = 7.5 Hz, 1H), 3.90 (s, 3H), 2.92 (d, J = 7.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 155.9$, 140.0, 137.3, 131.6, 129.1, 128.9, 128.0, 123.4, 121.5, 116.8, 114.9, 55.8, 35.1, 29.7, 21.0.

HRMS (ESI): calcd. for $C_{17}H_{14}N_3O [M + H]^+ 276.1131$, found 276.1132.

1-(4-fluoropyridin-2-yl)-3-phenylcyclopropane-1,2-dicarbonitrile (3f)

Cis isomer: Yellow solid; mp = 167-169 °C; $R_f = 0.72$ (petroleum ether / ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ = 8.35 (d, J = 5.3 Hz, 1H), 7.50 (ddd, J = 19.2, 12.3, 6.4 Hz, 5H), 7.23 (d, J = 5.3 Hz, 1H), 7.00 (s, 1H), 3.35 (d, J = 9.3 Hz, 1H), 2.84 (d, J = 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 164.5 (d, J = 199 Hz), 149.4 (d, J = 16 Hz), 147.3 (d, J = 8 Hz), 129.7, 129.4, 129.1, 128.9, 118.0 (d, J = 5 Hz), 114.1, 113.4, 106.8 (d, J = 40 Hz), 37.1, 28.4 (d, J = 4 Hz), 21.8.

Trans isomer: Yellow solid; mp = 139-141 °C; $R_f = 0.43$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.34$ (d, J = 5.3 Hz, 1H), 7.56 – 7.45 (m, 5H), 7.22 (d, J = 5.3 Hz, 1H), 7.00 (s, 1H), 3.35 (d, J = 9.3 Hz, 1H), 2.84 (d, J = 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.0$ (d, J = 239 Hz), 149.0 (d, J = 16 Hz), 144.5 (d, J = 9 Hz), 129.9, 129.6, 129.3, 127.9, 119.7 (d, J = 4 Hz), 115.2, 114.1, 108.7 (d, J = 39 Hz), 36.3, 28.1 (d, J = 4 Hz), 20.7. HRMS (ESI): calcd. for C₁₆H₁₁FN₃ [M + H]⁺ 264.0932, found 264.0929.

1-(5-chloropyridin-2-yl)-3-phenylcyclopropane-1,2-dicarbonitrile (3g)

Cis isomer: Brown solid; mp = 215-217 °C; $R_f = 0.33$ (petroleum ether / ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ = 8.47 (dd, J = 2.7, 0.5 Hz, 1H), 7.75 (dd, J = 8.4, 2.7 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.50 – 7.40 (m, 4H), 3.28 (d, J = 9.3 Hz, 1H), 2.75 (d, J = 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 152.7, 147.8, 137.5, 129.5, 129.3, 129.2, 129.1, 128.1, 125.0, 114.9, 114.0, 35.5, 26.6, 20.5.

Trans isomer: Yellow solid; mp = 126-128 °C; $R_f = 0.42$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.62$ (d, J = 2.6 Hz, 1H), 7.85 (dd, J = 8.4, 2.7 Hz, 1H), 7.50 – 7.42 (m, 4H), 7.38 – 7.33 (m, 2H), 3.54 (d, J = 7.1 Hz, 1H), 3.01 (d, J = 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 153.1$, 149.6, 138.7, 130.2, 129.5, 129.3, 127.9, 125.9, 125.0, 115.8, 114.6, 35.7, 26.1, 19.5. HRMS (ESI): calcd. for C₁₆H₁₁ClN₃ [M + H]⁺ 280.0636, found 280.0634.

Cis isomer: Brown solid; mp = 138-140 °C; $R_f = 0.49$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.75$ (d, J = 5.0 Hz, 1H), 8.10 (s, 1H), 7.57 (d, J = 6.7 Hz, 3H), 7.50 – 7.41 (m, 3H), 3.65 (d, J = 9.3 Hz, 1H), 3.34 (d, J = 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.1$, 151.1, 140.0 (q, $J_{C,F} = 34$ Hz), 129.9, 129.2, 129.1, 129.1, 122.2 (q, $J_{C,F} = 272$ Hz), 119.4 (q, $J_{C,F} = 4$ Hz), 117.5 (q, $J_{C,F} = 4$ Hz), 114.7, 114.3, 38.3, 30.1, 21.8.

Trans isomer: Yellow solid; mp = 113-115 °C; R_f = 0.63 (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.88 (d, *J* = 5.0 Hz, 1H), 8.06 (s, 1H), 7.61 (dd, *J* = 5.0, 0.7 Hz, 1H), 7.48 – 7.42 (m, 3H), 7.35 (dd, *J* = 7.4, 1.7 Hz, 2H), 4.38 (d, *J* = 7.8 Hz, 1H), 3.09 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 150.6, 150.3, 139.9 (q, *J*_{C,F} = 34 Hz), 130.8, 129.3, 129.2, 128.0, 122.2 (q, *J*_{C,F} = 272 Hz), 119.6 (q, *J*_{C,F} = 3 Hz), 118.6 (q, *J*_{C,F} = 3 Hz), 115.8, 114.1, 36.4, 30.1, 21.7. HRMS (ESI): calcd. for C₁₇H₁₁F₃N₃ [M + H]⁺ 314.0900, found 314.0901.

3-phenyl-1-(thiophen-3-yl)cyclopropane-1,2-dicarbonitrile (3i)

Cis isomer: Yellow solid; mp = 102-104 °C; $R_f = 0.38$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.56 (d, J = 7.3 Hz, 2H), 7.49 – 7.41 (m, 5H), 7.05 (dd, J = 5.0, 1.5 Hz, 1H), 3.26 (d, J = 9.1 Hz, 1H), 2.66 (d, J = 9.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 133.8, 129.9, 129.2, 129.1, 129.1, 128.5, 124.6, 123.47, 115.7, 114.4, 36.1, 25.7, 21.2.

Trans isomer: White solid; mp = 118-120 °C; $R_f = 0.62$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.58 - 7.55$ (m, 1H), 7.50 - 7.41 (m, 4H), 7.36 (d, J = 6.4 Hz, 2H), 7.25 (d, J = 1.3 Hz, 1H), 3.47 (d, J = 7.1 Hz, 1H), 2.89 (d, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 131.0$, 129.3, 128.0, 128.0, 127.7, 126.1, 125.1, 116.6, 115.3, 37.1, 25.5, 20.2. HRMS (ESI): calcd. For C₁₅H₁₀N₂NaS [M + Na]⁺273.0457, found 273.0456.

3-phenyl-1-(thiophen-2-yl)cyclopropane-1,2-dicarbonitrile (3j)

Cis isomer: Brown solid; mp = 108-110 °C; $R_f = 0.38$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.57 (d, J = 7.2 Hz, 2H), 7.50 – 7.41 (m, 3H), 7.34 (dd, J = 5.2, 1.1 Hz, 1H), 7.26 – 7.24 (m, 1H), 7.04 (dd, J = 5.1, 3.7 Hz, 1H), 3.33 (d, J = 9.2 Hz, 1H), 2.73 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 136.1, 129.6, 129.2, 129.1, 129.1, 127.7, 127.6, 126.6, 115.2, 114.1, 37.2, 25.2, 22.4.

Trans isomer: Yellow solid; mp = 144-146 °C; $R_f = 0.56$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49 - 7.42$ (m, 4H), 7.39 - 7.35 (m, 3H), 7.11 (dd, J = 5.2, 3.7 Hz, 1H), 3.56 (d, J = 7.2 Hz, 1H), 2.95 (d, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 133.0$, 130.6, 129.3, 129.2, 129.0, 127.9, 127.7, 127.7, 116.2, 115.0, 37.9, 24.7, 21.1.

HRMS (ESI): calcd. for $C_{15}H_{11}N_2S [M + H]^+ 251.0637$, found 251.0635.

1,3-diphenylcyclopropane-1,2-dicarbonitrile (3k)

Cis isomer: Yellow solid; mp = 117-119 °C; $R_f = 0.41$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.59 (d, *J* = 7.3 Hz, 2H), 7.51 – 7.43 (m, 8H), 3.28 (d, *J* = 9.2 Hz, 1H), 2.71 (d, *J* = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 132. 9, 130.1, 129.6, 129.5, 129.2, 129.2, 126.6, 115.8, 114.6, 35.6, 29.3, 20.4.

Trans isomer: White solid; mp = 118-120 °C; $R_f = 0.61$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.59$ (dd, J = 8.0, 1.5 Hz, 2H), 7.54 – 7.39 (m, 8H), 3.55 (d, J = 7.0 Hz, 1H), 2.91 (d, J = 7.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 131.2$, 130.4, 130.1, 129.6, 129.3, 129.2, 128.5, 128.0, 117.0, 115.2, 35.7, 29.2, 19.7.

HRMS (ESI): calcd. for $C_{17}H_{13}N_2 [M + H]^+ 245.1073$, found 245.1070.

1-(4-(*tert*-butyl)phenyl)-3-phenylcyclopropane-1,2-dicarbonitrile (31)

Cis isomer: Yellow solid; mp = 122-124 °C; $R_f = 0.62$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.61 - 7.57$ (m, 2H), 7.50 - 7.43 (m, 5H), 7.40 - 7.36 (m, 2H), 3.27 (d, J = 9.1 Hz, 1H), 2.68 (d, J = 9.1 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.9$, 130.2, 129.9, 129.2, 129.1, 129.1, 126.5, 126.3, 116.0, 114.7, 35.5, 34.7, 31.1, 29.0, 20.4.

Trans isomer: Yellow solid; mp = 151-153 °C; $R_f = 0.70$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51$ (s, 4H), 7.49 – 7.42 (m, 3H), 7.41 – 7.38 (m, 2H), 3.52 (d, J = 7.0 Hz, 1H), 2.88 (d, J = 7.0 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 153.2$, 131.4, 129.2, 129.1, 128.1, 128.0, 127.3, 126.5, 117.1, 115.3, 35.8, 34.8, 31.2, 28.9, 19.7. HRMS (ESI): calcd. for C₂₁H₂₀N₂Na [M + Na]⁺ 323.1519, found 323.1524.

1-(4-methoxyphenyl)-3-phenylcyclopropane-1,2-dicarbonitrile (3m)

Cis isomer: Yellow liquid; $R_f = 0.48$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.58 (d, J = 7.4 Hz, 2H), 7.49 – 7.42 (m, 3H), 7.38 – 7.35 (m, 2H), 6.97 – 6.94 (m, 2H), 3.83 (s, 3H), 3.22 (d, J = 9.1 Hz, 1H), 2.63 (d, J = 9.1 Hz,

1H). ¹³C NMR (100 MHz, CDCl₃) *δ* = 160.4, 130.2, 129.1, 129.1, 129.0, 128.3, 124.8, 116.2, 114.9, 114.8, 55.4, 35.3, 28.7, 20.2.

Trans isomer: Brown liquid; $R_f = 0.47$ (petroleum ether / ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.51 - 7.48$ (m, 2H), 7.47 - 7.43 (m, 3H), 7.40 - 7.37 (m, 2H), 7.03 - 6.98 (m, 2H), 3.85 (s, 3H), 3.48 (d, J = 6.9 Hz, 1H), 2.85 (d, J = 6.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.7$, 131.3, 130.0, 129.6, 129.2, 129.2, 129.1, 128.0, 122.3, 117.2, 115.4, 114.9, 55.4, 35.8, 28.6, 19.6. HRMS (ESI): calcd. for C₁₈H₁₅N₂O [M + H]⁺ 275.1179, found 275.1183.

1-([1,1'-biphenyl]-4-yl)-3-phenylcyclopropane-1,2-dicarbonitrile (3n)

Cis isomer: Yellow solid; mp = 146-148 °C; $R_f = 0.55$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.68 (d, J = 8.4 Hz, 2H), 7.60 (t, J = 6.9 Hz, 4H), 7.54 – 7.41 (m, 8H), 3.32 (d, J = 9.2 Hz, 1H), 2.74 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 142.6, 139.5, 131.7, 130.1, 129.2, 129.0, 128.2, 128.0, 127.1, 127.0, 115.8, 114.6, 35.7, 29.1, 20.6.

Trans isomer: Yellow solid; mp = 170-172 °C; $R_f = 0.61$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.75 - 7.70$ (m, 2H), 7.67 - 7.60 (m, 4H), 7.51 - 7.39 (m, 8H), 3.59 (d, J = 7.0 Hz, 1H), 2.94 (d, J = 7.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 143.0$, 139.7, 131.2, 129.3, 129.3, 129.2, 128.9, 128.2, 128.1, 128.0, 127.2, 117.0, 115.3, 35.9, 29.0, 19.8. HRMS (ESI): calcd. for $C_{23}H_{17}N_2$ [M + H]⁺ 321.1386, found 321.1392.

1-(4-chlorophenyl)-3-phenylcyclopropane-1,2-dicarbonitrile (30)

Cis isomer: Yellow solid; mp = 191-193 °C; $R_f = 0.43$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.57 (d, J = 7.2 Hz, 2H), 7.51 – 7.38 (m, 7H), 3.24 (d, J = 9.2 Hz, 1H), 2.68 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 135.8, 131.5, 129.8, 129.8, 129.3, 129.2, 129.1, 128.1, 115.5, 114.3, 35.7, 28.8, 20.6.

Trans isomer: Yellow solid; mp = 127-129 °C; $R_f = 0.60$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.54 - 7.43$ (m, 7H), 7.40 - 7.36 (m, 2H), 3.50 (d, J = 7.1 Hz, 1H), 2.92 (d, J = 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 136.1$, 130.8, 129.8, 129.7, 129.2, 129.2, 128.9, 127.9, 116.6, 115.0, 35.7, 35.5, 28.5, 19.6. HRMS (ESI): calcd. for $C_{17}H_{12}ClN_2$ [M + H]⁺ 279.0684, found 279.0687.

1-(4-bromophenyl)-3-phenylcyclopropane-1,2-dicarbonitrile (3p)

Cis isomer: Yellow solid; mp = 186-188 °C; $R_f = 0.45$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.58 (dd, J = 14.3, 7.9 Hz, 4H), 7.51 – 7.42 (m, 3H), 7.33 (d, J = 8.6 Hz, 2H), 3.25 (d, J = 9.2 Hz, 1H), 2.68 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 132.8, 132.0, 129.7, 129.3, 129.3, 129.1, 128.3, 123.9, 115.4, 114.3, 35.7, 28.8, 20.6.

Trans isomer: Yellow solid; mp = 129-131 °C; $R_f = 0.57$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.66 - 7.61$ (m, 2H), 7.49 - 7.43 (m, 5H), 7.40 - 7.35 (m, 2H), 3.50 (d, J = 7.1 Hz, 1H), 2.92 (d, J = 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 132.7$, 130.7, 130.0, 129.4, 129.2, 129.1, 127.9, 124.3, 116.5, 115.0, 35.6, 28.5, 19.6.

HRMS (ESI): calcd. for $C_{17}H_{12}BrN_2 [M + H]^+ 323.0178$, found 323.0173.

1-(2-bromophenyl)-3-phenylcyclopropane-1,2-dicarbonitrile (3q)

Cis isomer: Brown solid; mp = 128-130 °C; $R_f = 0.38$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.70 - 7.65$ (m, 3H), 7.51 - 7.43 (m, 4H), 7.39 (td, J = 7.5, 1.3 Hz, 1H), 7.32 (td, J = 7.7, 1.8 Hz, 1H), 3.24 (d, J = 9.2 Hz, 1H), 2.63 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 133.8$, 132.8, 131.6, 131.2, 130.1, 129.1, 129.0, 128.3, 125.4, 114.8, 114.7, 35.6, 30.1, 20.9.

Trans isomer: Yellow solid; mp = 182-184 °C; $R_f = 0.47$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.76$ (dd, J = 8.0, 1.2 Hz, 1H), 7.59 (dd, J = 7.7, 1.6 Hz, 1H), 7.50 – 7.44 (m, 6H), 7.40 – 7.35 (m, 1H), 3.43 (d, J = 7.1

Hz, 1H), 3.02 (d, J = 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 134.2$, 131.9, 131.8, 130.9, 130.6, 129.2, 129.1, 128.3, 128.0, 125.9, 115.6, 115.3, 37.4, 30.3, 19.6. HRMS (ESI): calcd. for C₁₇H₁₂BrN₂ [M + H]⁺ 323.0178, found 323.0170.

3-phenyl-1-(4-(trifluoromethyl)phenyl)cyclopropane-1,2-dicarbonitrile (3r)

Cis isomer: Yellow solid; mp = 140-142 °C; $R_f = 0.43$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.73 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.5 Hz, 4H), 7.51 – 7.43 (m, 3H), 3.31 (d, J = 9.2 Hz, 1H), 2.77 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 136.7, 131.8 (q, $J_{C,F}$ = 33 Hz), 129.6, 129.4, 129.3, 129.1, 127.0, 126.6 (q, $J_{C,F}$ = 3 Hz), 123.4 (q, $J_{C,F}$ = 271 Hz), 115.2, 114.1, 36.1, 29.0, 20.9.

Trans isomer: Yellow liquid; $R_f = 0.60$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.79$ (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.50 – 7.43 (m, 3H), 7.39 (dd, J = 7.3, 1.7 Hz, 2H), 3.58 (d, J = 7.1 Hz, 1H), 2.99 (d, J = 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 134.2$, 132.0 (q, $J_{C,F} = 33$ Hz), 130.6, 129.4, 129.3, 128.9, 128.0, 126.6 (q, $J_{C,F} = 4$ Hz), 123.4 (q, $J_{C,F} = 271$ Hz), 116.3, 114.8, 35.9, 28.7, 19.8.

HRMS (ESI): calcd. for $C_{18}H_{12}F_3N_2$ [M + H]⁺ 313.0947, found 313.0951.

1-(3,4-dichlorophenyl)-3-phenylcyclopropane-1,2-dicarbonitrile (3s)

Cis isomer: Yellow solid; mp = 141-143 °C; $R_f = 0.53$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.57 - 7.51$ (m, 4H), 7.50 - 7.42 (m, 3H), 7.29 (dd, J = 8.4, 2.3 Hz, 1H), 3.25 (d, J = 9.3 Hz, 1H), 2.70 (d, J = 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 134.1$, 133.9, 132.8, 131.5, 129.5, 129.4, 129.2, 129.1, 128.7, 125.9, 115.1, 114.1, 35.8, 28.4, 20.7.

Trans isomer: White solid; mp = 108-110 °C; $R_f = 0.62$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.68$ (d, J = 2.3 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.49 – 7.41 (m, 4H), 7.38 – 7.34 (m, 2H), 3.50 (d, J = 7.1 Hz, 1H), 2.93

(d, J = 7.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 134.6$, 133.8, 131.5, 130.5, 130.4, 130.4, 129.3, 129.2, 127.9, 127.6, 116.1, 114.8, 35.7, 28.1, 19.8. HRMS (ESI): calcd. for C₁₇H₁₁Cl₂N₂ [M + H]⁺ 313.0294, found 313.0290.

1-(3,5-difluorophenyl)-3-phenylcyclopropane-1,2-dicarbonitrile (3t)

Cis isomer: Yellow solid; mp = 132-134 °C; $R_f = 0.57$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.55 (dd, J = 7.4, 1.2 Hz, 2H), 7.51 – 7.44 (m, 3H), 7.03 – 6.96 (m, 2H), 6.90 (tt, J = 8.6, 2.2 Hz, 1H), 3.25 (d, J = 9.3 Hz, 1H), 2.71 (d, J = 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.4 (dd, $J_{C,F}$ = 251, 13 Hz), 136.4 (t, $J_{C,F}$ = 10 Hz), 129.4, 129.2, 129.1, 127.9, 114.9, 113.9, 110.0 (dd, $J_{C,F}$ = 19, 8 Hz), 105.3 (t, $J_{C,F}$ = 25 Hz), 36.1, 28.7 (t, $J_{C,F}$ = 3 Hz), 21.0.

Trans isomer: Yellow solid; mp = 145-147 °C; R_f = 0.63 (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.50 – 7.43 (m, 3H), 7.38 – 7.34 (m, 2H), 7.18 – 7.11 (m, 2H), 6.95 (tt, *J* = 8.6, 2.2 Hz, 1H), 3.51 (d, *J* = 7.2 Hz, 1H), 2.95 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 163.2 (dd, *J*_{C,F} = 250, 13 Hz), 133.8 (t, *J*_{C,F} = 10 Hz), 130.4, 129.4, 129.2, 127.9, 116.0, 114.6, 111.9 (dd, *J*_{C,F} = 19, 8 Hz), 105.8 (t, *J*_{C,F} = 25 Hz), 35.8, 28.5 (t, *J*_{C,F} = 3 Hz), 20.0. HRMS (ESI): calcd. for C₁₇H₁₁F₂N₂ [M + H]⁺ 281.0885, found 281.0889.

1-(4-cyanophenyl)-3-phenylcyclopropane-1,2-dicarbonitrile (3u)

Cis isomer: Yellow solid; mp = 186-188 °C; $R_f = 0.40$ (petroleum ether / ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.78 (d, J = 8.1 Hz, 2H), 7.60 – 7.53 (m, 4H), 7.52 – 7.45 (m, 3H), 3.31 (d, J = 9.3 Hz, 1H), 2.78 (d, J = 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 137.8, 133.3, 129.6, 129.4, 129.3, 129.1, 127.2, 117.5, 114.8, 113.8, 113.7, 36.4, 29.1, 21.2.

Trans isomer: Yellow solid; mp = 128-130 °C; $R_f = 0.43$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.80 - 7.76$ (m, 2H), 7.72 - 7.68 (m, 2H), 7.49 - 7.43 (m, 3H), 7.39 - 7.35 (m, 2H), 3.59 (d, J = 7.2 Hz, 1H), 3.03 (d, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 135.2$, 133.0, 130.3, 129.3, 129.1,

129.0, 127.9, 117.6, 115.9, 114.6, 113.7, 35.8, 28.7, 20.0. HRMS (ESI): calcd. for C₁₈H₁₂N₃ [M + H]⁺ 270.1026, found 270.1023.

1-(pyridin-2-yl)-3-(o-tolyl)cyclopropane-1,2-dicarbonitrile (4a)

Cis isomer: White solid; mp = 136-138 °C; $R_f = 0.41$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 8.54 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.84 (dd, J = 7.7, 1.7 Hz, 1H), 7.67 (d, J = 7.0 Hz, 1H), 7.35 – 7.28 (m, 4H), 3.51 (d, J = 9.0 Hz, 1H), 3.32 (d, J = 9.1 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 150.1, 149.9, 138.3, 137.6, 130.8, 129.2, 129.06, 128.4, 126.4, 123.6, 121.5, 115.4, 115.2, 36.8, 30.2, 20.9, 19.7.

Trans isomer: White solid; mp = 129-131 °C; $R_f = 0.52$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.69$ (dt, J = 4.8, 1.4 Hz, 1H), 7.87 – 7.82 (m, 2H), 7.37 (ddd, J = 6.1, 4.8, 2.7 Hz, 1H), 7.35 – 7.26 (m, 3H), 7.22 (dd, J = 6.0, 2.7 Hz, 1H), 4.35 (d, J = 7.8 Hz, 1H), 3.03 (d, J = 7.8 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.6$, 148.4, 138.2, 137.5, 130.6, 130.4, 129.0, 127.1, 126.4, 123.8, 122.7, 116.5, 114.7, 34.8, 29.6, 21.2, 19.5. HRMS (ESI): calcd. for $C_{17}H_{14}N_3$ [M + H]⁺ 260.1182, found 260.1183.

1-(pyridin-3-yl)-3-(m-tolyl)cyclopropane-1,2-dicarbonitrile (4b)

Cis isomer: Yellow solid; mp = 122-124 °C; $R_f = 0.43$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 8.53 (d, J = 4.7 Hz, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.80 (td, J = 7.7, 1.7 Hz, 1H), 7.38 – 7.29 (m, 4H), 7.22 (d, J = 7.3 Hz, 1H), 3.58 (d, J = 9.2 Hz, 1H), 3.28 (d, J = 9.2 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 150.2, 149.9, 138.7, 137.4, 130.3, 129.8, 129.7, 128.9, 126.0, 123.5, 121.6, 115.4, 114.8, 37.6, 29.9, 21.3, 21.1.

Trans isomer: White solid; mp = 130-132 °C; $R_f = 0.53$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.68$ (d, J = 4.7 Hz, 1H), 7.86 – 7.80 (m, 2H), 7.37 – 7.30 (m, 2H), 7.22 – 7.13 (m, 3H), 4.34 (d, J = 7.7 Hz, 1H), 2.99 (d, J

= 7.7 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 149.4, 148.5, 138.8, 137.3, 131.3, 129.7, 128.9, 128.8, 124.9, 123.8, 122.8, 116.5, 114.6, 35.6, 30.1, 21.3, 21.2.

HRMS (ESI): calcd. for $C_{17}H_{14}N_3 [M + H]^+ 260.1182$, found 260.1182.

3-(4-(tert-butyl)phenyl)-1-(pyridin-2-yl)cyclopropane-1,2-dicarbonitrile (4c)

Cis isomer: White solid; mp = 141-143 °C; $R_f = 0.53$ (petroleum ether / ethyl acetate = 4:1).¹H NMR (400 MHz, CDCl₃) δ = 8.53 (d, J = 4.3 Hz, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.80 (td, J = 7.7, 1.7 Hz, 1H), 7.52 – 7.46 (m, 4H), 7.31 (ddd, J = 7.4, 4.8, 0.9 Hz, 1H), 3.56 (d, J = 9.2 Hz, 1H), 3.30 (d, J = 9.2 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ = 151.9, 150.2, 149.7, 137.4, 128.7, 127.3, 125.9, 123.5, 121.5, 115.4, 114.9, 37.5, 34.6, 31.2, 29.9, 21.2.

Trans isomer: White solid; mp = 108-110 °C; $R_f = 0.65$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.69 - 8.67$ (m, 1H), 7.86 - 7.82 (m, 2H), 7.46 - 7.44 (m, 2H), 7.36 (ddd, J = 6.8, 4.8, 1.9 Hz, 1H), 7.29 (d, J = 8.3 Hz, 2H), 4.32 (d, J = 7.7 Hz, 1H), 2.98 (d, J = 7.7 Hz, 1H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.0, 149.4, 148.5, 137.4, 128.3, 127.6, 126.0, 123.8, 122.7, 116.6, 114.7, 35.5, 34.6, 31.2, 30.1, 21.4.$

HRMS (ESI): calcd. for $C_{20}H_{20}N_3 [M + H]^+ 302.1652$, found 302.1650.

3-(3,5-dimethylphenyl)-1-(pyridin-2-yl)cyclopropane-1,2-dicarbonitrile (4d)

Only the *cis* isomer can be separated as pure compound, the spectroscopic data are as follows:

Cis isomer: White solid; mp = 139-141 °C; $R_f = 0.50$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.54 - 8.51$ (m, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.80 (td, J = 7.7, 1.7 Hz, 1H), 7.31 (ddd, J = 7.5, 4.8, 1.0 Hz, 1H), 7.16 (s, 2H), 7.04 (s, 1H), 3.53 (d, J = 9.2 Hz, 1H), 3.26 (d, J = 9.2 Hz, 1H), 2.36 (s, 6H). ¹³C NMR

(100 MHz, CDCl₃) δ = 150.4, 149.9, 138.6, 137.4, 130.7, 130.2, 126.2, 123.5, 121.6, 115.4, 114.9, 37.7, 29.9, 21.3, 21.1. HRMS (ESI): calcd. for C₁₈H₁₆N₃ [M + H]⁺ 274.1339, found 274.1341.

3-(4-methoxyphenyl)-1-(pyridin-2-yl)cyclopropane-1,2-dicarbonitrile (4e)

Only the *trans* isomer can be separated as pure compound, the spectroscopic data are as follows:

Trans isomer: Yellow solid; mp = 149-151 °C; $R_f = 0.40$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.67$ (dt, J = 4.8, 1.4 Hz, 1H), 7.84 – 7.79 (m, 2H), 7.37 – 7.32 (m, 1H), 7.27 (d, J = 8.9 Hz, 2H), 6.97 – 6.92 (m, 2H), 4.30 (d, J = 7.6 Hz, 1H), 3.82 (s, 3H), 2.93 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 160.0$, 149.5, 148.6, 137.4, 129.2, 123.8, 123.3, 122.8, 116.7, 114.8, 114.5, 55.3, 35.3, 30.2, 21.4.

HRMS (ESI): calcd. for $C_{17}H_{14}N_3O$ [M + H]+ 276.1131, found 276.11310.

3-(naphthalen-1-yl)-1-(pyridin-3-yl)cyclopropane-1,2-dicarbonitrile (4f)

Cis isomer: Yellow solid; mp = 170-172 °C; $R_f = 0.38$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.65 - 8.55$ (m, 1H), 7.92 (tdd, J = 13.7, 10.6, 7.0 Hz, 5H), 7.67 (d, J = 8.3 Hz, 1H), 7.58 - 7.46 (m, 3H), 7.40 - 7.36 (m, 1H), 3.93 (d, J = 9.0 Hz, 1H), 3.47 (d, J = 9.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 150.1, 150.1, 137.7, 133.8, 132.2, 129.9, 129.2, 127.0, 126.9, 126.7, 126.3, 125.3, 123.7, 122.8, 121.9, 115.3, 115.2, 35.8, 30.6, 21.0.$

Trans isomer: White solid; mp = 200-202 °C; $R_f = 0.53$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.78$ (dt, J = 4.8, 1.3 Hz, 1H), 7.89 (ddd, J = 20.8, 16.5, 8.1 Hz, 5H), 7.57 – 7.42 (m, 5H), 4.84 (d, J = 7.7 Hz, 1H), 3.17 (d, J = 7.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 149.8$, 148.4, 137.7, 133.7, 132.2, 129.9, 129.0, 128.3, 127.3, 126.6, 125.4, 125.1, 124.1, 123.3, 123.0, 116.5,

114.8, 33.9, 30.2, 21.2. HRMS (ESI): calcd. for C₂₀H₁₄N₃ [M + H]⁺ 296.1182, found 296.1187.

3-(3-fluorophenyl)-1-(pyridin-2-yl)cyclopropane-1,2-dicarbonitrile (4g)

Cis isomer: Yellow solid; mp = 97-99 °C; $R_f = 0.37$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 8.53 (ddd, J = 4.8, 1.6, 1.0 Hz, 1H), 7.88 (dt, J = 7.9, 0.9 Hz, 1H), 7.82 (td, J = 7.7, 1.7 Hz, 1H), 7.44 (td, J = 8.0, 5.8 Hz, 1H), 7.39 – 7.26 (m, 3H), 7.11 (td, J = 8.3, 2.1 Hz, 1H), 3.60 (d, J = 9.3 Hz, 1H), 3.29 (d, J = 9.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 162.3 (d, J_{CF} = 246 Hz), 150.0, 149.7, 137.5, 132.7 (d, J_{CF} = 8 Hz), 130.7 (d, J_{CF} = 8 Hz), 124.8 (d, J_{CF} = 3 Hz), 123.7, 121.6, 116.4 (d, J_{CF} = 23 Hz), 116.1 (d, J_{CF} = 21 Hz), 115.1, 114.5, 36.8 (d, J_{CF} = 2 Hz), 29.9, 21.2.

Trans isomer: White solid; mp = 100-102 °C; R_f = 0.50 (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 8.67 (dt, J = 4.8, 1.4 Hz, 1H), 7.87 – 7.83 (m, 2H), 7.44 – 7.35 (m, 2H), 7.16 – 7.07 (m, 3H), 4.38 (d, J = 7.6 Hz, 1H), 2.96 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 162.9 (d, $J_{C,F}$ = 246 Hz), 149.5, 148.1, 137.5, 133.8 (d, $J_{C,F}$ = 8 Hz), 130.8 (d, $J_{C,F}$ = 8 Hz), 124.0, 123.7 (d, $J_{C,F}$ = 3 Hz), 122.9, 116.2, 116.2 (d, $J_{C,F}$ = 21 Hz), 115.4 (d, $J_{C,F}$ = 23 Hz), 114.2, 35.0 (d, $J_{C,F}$ = 2 Hz), 30.2, 21.4.

HRMS (ESI): calcd. for $C_{16}H_{11}FN_3$ [M + H]+ 264.0932, found 264.0930.

3-(4-chlorophenyl)-1-(pyridin-2-yl)cyclopropane-1,2-dicarbonitrile (4h)

Only the *cis* isomer can be separated as pure compound, the spectroscopic data are as follows:

Cis isomer: Yellow solid; mp = 127-129 °C; $R_f = 0.38$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.55 - 8.51$ (m, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.82 (td, J = 7.7, 1.7 Hz, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.45 - 7.41 (m, 2H), 7.33 (ddd, J = 7.4, 4.8, 1.1 Hz, 1H), 3.58 (d, J = 9.2 Hz, 1H), 3.29 (d, J = 9.2 Hz, 1H). ¹³C

NMR (100 MHz, CDCl₃): δ = 150.0, 149.7, 137.5, 135.1, 130.5, 129.3, 128.9, 123.7, 121.6, 115.1, 114.6, 36.8, 30.0, 21.3. HRMS (ESI): calcd. for C₁₆H₁₁ClN₃ [M + H]⁺ 280.0636, found 280.0640.

1-phenyl-3-(o-tolyl)cyclopropane-1,2-dicarbonitrile (4i)

Cis isomer: Black liquid; $R_f = 0.39$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.67 (d, J = 6.9 Hz, 1H), 7.49 – 7.43 (m, 5H), 7.35 – 7.29 (m, 3H), 3.20 (d, J = 9.0 Hz, 1H), 2.72 (d, J = 9.0 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 138.3, 131.0, 129.7, 129.4, 129.3, 128.8, 126.5, 125.9, 115.8, 35.1, 29.5, 21.0, 20.0.

Trans isomer: Yellow solid; mp = 154-156 °C; $R_f = 0.62$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.62$ (d, J = 6.8 Hz, 2H), 7.52 (d, J = 7.8 Hz, 3H), 7.37 – 7.25 (m, 4H), 3.56 (d, J = 6.9 Hz, 1H), 2.93 (d, J = 6.9 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 138.0$, 130.9, 130.1, 130.1, 129.9, 129.6, 129.3, 127.7, 127.6, 126.6, 117.1, 115.2, 34.2, 28.9, 20.5, 20.0. HRMS (ESI): calcd. for $C_{18}H_{15}N_2$ [M + H]⁺ 259.1230, found 259.1235.

3-(4-(tert-butyl)phenyl)-1-phenylcyclopropane-1,2-dicarbonitrile (4j)

Cis isomer: Yellow liquid; $R_f = 0.52$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.51 (d, J = 3.9 Hz, 3H), 7.49 – 7.40 (m, 6H), 3.23 (d, J = 9.2 Hz, 1H), 2.69 (d, J = 9.2 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ = 152.3, 133.1, 129.6, 129.5, 128.8, 127.0, 126.7, 126.1, 115.9, 114.7, 35.5, 34.7, 31.2, 29.3, 20.5.

Trans isomer: Yellow liquid; $R_f = 0.70$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.61 - 7.57$ (m, 2H), 7.53 - 7.46 (m, 5H), 7.34 (dd, J = 7.6, 5.5 Hz, 3H), 3.50 (d, J = 7.0 Hz, 1H), 2.88 (d, J = 7.0 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 152.3$, 130.6, 129.9, 129.5, 128.5, 128.1, 127.7, 126.1,

117.1, 115.3, 35.5, 34.7, 31.2, 29.1, 19.8. HRMS (ESI): calcd. for C₂₁H₂₁N₂ [M + H]⁺ 301.1699, found 301.1694.

3-(3-fluorophenyl)-1-phenylcyclopropane-1,2-dicarbonitrile (4k)

Cis isomer: Yellow liquid; $R_f = 0.33$ (petroleum ether / ethyl acetate = 4:1); ¹H NMR (400 MHz, CDCl₃) δ = 7.50 – 7.42 (m, 6H), 7.41 – 7.38 (m, 1H), 7.30 (d, *J* = 9.4 Hz, 1H), 7.14 (td, *J* = 8.2, 2.5 Hz, 1H), 3.25 (d, *J* = 9.2 Hz, 1H), 2.72 (d, *J* = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 162.8 (d, *J*_{C,F} = 247 Hz), 132.6, 132.3 (d, *J*_{C,F} = 8 Hz), 130.9 (d, *J*_{C,F} = 8 Hz), 129.7, 129.7, 126.6, 124.9 (d, *J*_{C,F} = 3 Hz), 116.5 (d, *J*_{C,F} = 23 Hz), 116.4 (d, *J*_{C,F} = 21 Hz), 115.6, 114.3, 34.9 (d, *J*_{C,F} = 2 Hz), 29.3, 20.4.

Trans isomer: Yellow liquid; $R_f = 0.56$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (dt, J = 8.6, 2.4 Hz, 2H), 7.54 - 7.48 (m, 3H), 7.44 (td, J = 8.2, 7.0 Hz, 1H), 7.20 - 7.17 (m, 1H), 7.16 - 7.10 (m, 2H), 3.53 (d, J = 7.0 Hz, 1H), 2.90 (d, J = 7.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.8$ (d, $J_{C,F} = 246$ Hz), 133.6 (d, $J_{C,F} = 8$ Hz), 130.9 (d, $J_{C,F} = 8$ Hz), 130.1, 130.0, 129.6, 128.4, 123.7 (d, $J_{C,F} = 3$ Hz), 116.7, 116.3 (d, $J_{C,F} = 21$ Hz), 115.4 (d, $J_{C,F} = 22$ Hz), 114.9, 35.0 (d, $J_{C,F} = 2$ Hz), 29.2, 19.7.

HRMS (ESI): calcd. for $C_{17}H_{12}FN_2 [M + H]^+$ 263.0979, found 263.0976.

3-(3-fluorophenyl)-1-(p-tolyl)cyclopropane-1,2-dicarbonitrile (41)

Cis isomer: Yellow solid; mp = 110-112 °C; $R_f = 0.47$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.46 (dd, J = 8.0, 2.2 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.33 – 7.26 (m, 5H), 7.14 (dd, J = 8.4, 6.0 Hz, 1H), 3.21 (d, J = 9.1 Hz, 1H), 2.67 (d, J = 9.1 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 162.8 (d, $J_{C,F}$ = 246 Hz), 139.9, 132.4 (d, $J_{C,F}$ = 8 Hz), 130.9 (d, $J_{C,F}$ = 8 Hz), 130.3, 129.6, 126.5, 124.8 (d, $J_{C,F}$ = 3 Hz), 116.5 (d, $J_{C,F}$ = 23 Hz), 116.3 (d, $J_{C,F}$ = 21 Hz), 115.7, 114.4, 34.8 (d, $J_{C,F}$ = 3 Hz), 29.11, 21.1, 20.3.

Trans isomer: Yellow liquid; $R_f = 0.67$ (petroleum ether / ethyl acetate = 4:1). ¹H

NMR (400 MHz, CDCl₃): $\delta = 7.47 - 7.41$ (m, 3H), 7.31 (d, J = 7.9 Hz, 2H), 7.18 (dd, J = 4.5, 3.8 Hz, 1H), 7.12 (t, J = 8.2 Hz, 2H), 3.50 (d, J = 7.0 Hz, 1H), 2.87 (d, J = 7.0 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.8$ (d, $J_{C,F} = 247$ Hz), 140.3, 133.7 (d, $J_{C,F} = 8$ Hz), 130.8 (d, $J_{C,F} = 8$ Hz), 130.2, 128.3, 127.1, 123.7, (d, $J_{C,F} = 3$ Hz), 116.9, 116.2 (d, $J_{C,F} = 21$ Hz), 115.4 (d, $J_{C,F} = 23$ Hz), 115.0, 35.0 (d, $J_{C,F} = 3$ Hz), 29.0, 21.2, 19.7.

HRMS (ESI): calcd. for $C_{18}H_{14}FN_2 [M + H]^+ 277.1136$, found 277.1132.

1-(4-chlorophenyl)-3-(o-tolyl)cyclopropane-1,2-dicarbonitrile (4m)

Cis isomer: Brown solid; mp = 132-134 °C; $R_f = 0.50$ (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ = 7.64 (d, J = 6.9 Hz, 1H), 7.46 – 7.43 (m, 2H), 7.41 – 7.38 (m, 2H), 7.32 (td, J = 7.5, 3.7 Hz, 3H), 3.16 (d, J = 9.1 Hz, 1H), 2.70 (d, J = 9.1 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 138.2, 135.6, 131.2, 131.0, 129.8, 129.4, 128.7, 128.5, 127.2, 126.6, 115.6, 114.6, 35.3, 29.0, 21.2, 19.9.

Trans isomer: Brown solid; mp = 110-112 °C; R_f = 0.64 (petroleum ether / ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.57 – 7.53 (m, 2H), 7.52 – 7.47 (m, 2H), 7.37 – 7.27 (m, 3H), 7.23 (d, *J* = 7.3 Hz, 1H), 3.50 (d, *J* = 7.1 Hz, 1H), 2.94 (d, *J* = 7.1 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 137.9, 136.1, 130.9, 129.8, 129.8, 129.4, 129.0, 128.7, 127.5, 126.7, 116.6, 115.0, 34.5, 28.3, 20.57, 20.0. HRMS (ESI): calcd. for C₁₈H₁₄ClN₂ [M + H]⁺ 293.0840, found 293.0846.

6-phenyl-1-(pyridin-2-yl)-3-azabicyclo[3.1.0]hexane-2,4-dione (5a)

To a solution of KOH (33.6 mg, 0.6 mmol) in 80% EtOH (2 mL) was slowly added the **3a** (49 mg, 0.2 mmol). The mixture was heated to reflux for overnight. Solvent was removed under reduced pressure. The residue was dissolved in water and acidified with acetic acid followed by extraction with ethyl acetate. The crude product was purified by column chromatography on silica gel with Ethyl acetate/Hexane to afford the product as a yellow solid, 99% yield. Yellow solid; mp = 186-188 °C; $R_f = 0.33$ (petroleum ether / ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ = 8.49 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 8.15 – 8.09 (m, 1H), 7.74 (td, J = 7.8, 1.8 Hz, 1H), 7.57 (s, 1H), 7.35 (dd, J = 7.0, 1.6 Hz, 2H), 7.32 – 7.26 (m, 3H), 7.23 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 3.96 (d, J = 8.7 Hz, 1H), 3.37 (d, J = 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 172.6, 172.1, 152.2, 149.5, 136.6, 132.5, 129.2, 128.9, 128.2, 122.8, 122.6, 44.2, 42.4, 35.9. HRMS (ESI): calcd. for C₁₆H₁₃N₂O₂ [M + H]⁺ 265.0972, found 265.0968.

E. Reference

1. Goumans, T. P. M.; Alem, K.; Lodder, G. Photochemical generation and structure of vinyl radicals. *Eur. J. Org. Chem.* 2008, 435-443.

F. Copies of ¹H and ¹³C NMR spectra

Figure S2. ¹³C NMR Spectrum of *cis*-3a (100 MHz, CDCl₃)

Figure S4. ¹³C NMR Spectrum of *trans*-3a (100 MHz, CDCl₃)

Figure S5. ¹H NMR Spectrum of *cis*-3b (400 MHz, CDCl₃)

Figure S6. ¹³C NMR Spectrum of *cis*-3b (100 MHz, CDCl₃)

Figure S8. ¹³C NMR Spectrum of *trans*-3b (100 MHz, CDCl₃)

Figure S10. ¹³C NMR Spectrum of *cis*-3c (100 MHz, CDCl₃)

Figure S12. ¹³C NMR Spectrum of *trans*-3c (100 MHz, CDCl₃)

Figure S14. ¹³C NMR Spectrum of *cis*-3d (100 MHz, CDCl₃)

Figure S15. ¹H NMR Spectrum of *trans*-3d (400 MHz, CDCl₃)

Figure S16. ¹³C NMR Spectrum of *trans*-3d (100 MHz, CDCl₃)

60 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

Figure S18. ¹³C NMR Spectrum of *cis*-3e (100 MHz, CDCl₃)

90 80 f1 (ppm)

Figure S22. ¹³C NMR Spectrum of *cis*-3f (100 MHz, CDCl₃)

Figure S24. ¹³C NMR Spectrum of *trans*-3f (100 MHz, CDCl₃)

Figure S26. ¹³C NMR Spectrum of *cis*-3g (100 MHz, CDCl₃)

Figure S28. ¹³C NMR Spectrum of *trans*-3g (100 MHz, CDCl₃)

Figure S30. ¹³C NMR Spectrum of *cis*-3h (100 MHz, CDCl₃)

Figure S32. ¹³C NMR Spectrum of *trans*-3h (100 MHz, CDCl₃)

Figure S34. ¹³C NMR Spectrum of *cis*-3i (100 MHz, CDCl₃)

Figure S36. ¹³C NMR Spectrum of *trans*-3i (100 MHz, CDCl₃)

Figure S38. ¹³C NMR Spectrum of *cis*-3j (100 MHz, CDCl₃)

Figure S40. ¹³C NMR Spectrum of *trans*-3j (100 MHz, CDCl₃)

Figure S42. ¹³C NMR Spectrum of *cis*-3k (100 MHz, CDCl₃)

Figure S44. ¹³C NMR Spectrum of *trans*-3k (100 MHz, CDCl₃)

Figure S46. ¹³C NMR Spectrum of *cis*-3l (100 MHz, CDCl₃)

Figure S48. ¹³C NMR Spectrum of *trans*-3l (100 MHz, CDCl₃)

Figure S50. ¹³C NMR Spectrum of *cis*-3m (100 MHz, CDCl₃)

Figure S52. ¹³C NMR Spectrum of *trans*-3m (100 MHz, CDCl₃)

Figure S54. ¹³C NMR Spectrum of *cis*-3n (100 MHz, CDCl₃)

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

Figure S56. ¹³C NMR Spectrum of *trans*-3n (100 MHz, CDCl₃)

Figure S58. ¹³C NMR Spectrum of *cis*-30 (100 MHz, CDCl₃)

Figure S62. ¹³C NMR Spectrum of *cis*-3p (100 MHz, CDCl₃)

Figure S64. ¹³C NMR Spectrum of *trans*-3p (100 MHz, CDCl₃)

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

Figure S66. ¹³C NMR Spectrum of *cis*-3q (100 MHz, CDCl₃)

Figure S68. ¹³C NMR Spectrum of *trans*-3q (100 MHz, CDCl₃)

Figure S70. ¹³C NMR Spectrum of *cis*-3r (100 MHz, CDCl₃)

Figure S74. ¹³C NMR Spectrum of *cis*-3s (100 MHz, CDCl₃)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

150

Figure S78. ¹³C NMR Spectrum of *cis*-3t (100 MHz, CDCl₃)

488 488 484 486 487 486

Figure S82. ¹³C NMR Spectrum of *cis*-3u (100 MHz, CDCl₃)

Figure S84. ¹³C NMR Spectrum of *trans*-3u (100 MHz, CDCl₃)

Figure S86. ¹³C NMR Spectrum of *cis*-4a (100 MHz, CDCl₃)

Figure S90. ¹³C NMR Spectrum of *cis*-4b (100 MHz, CDCl₃)

Figure S92. ¹³C NMR Spectrum of *trans*-4b (100 MHz, CDCl₃)

Figure S94. ¹³C NMR Spectrum of *cis*-4c (100 MHz, CDCl₃)

Figure S96. ¹³C NMR Spectrum of *trans*-4c (100 MHz, CDCl₃)

Figure S98. ¹³C NMR Spectrum of *cis*-4d (100 MHz, CDCl₃)

Figure S100. ¹³C NMR Spectrum of *trans*-4e (100 MHz, CDCl₃)

$\begin{array}{c} 8. 618\\ 8. 617\\ 8. 616\\ 8. 601\\ 8. 601\\ 8. 601\\ 8. 601\\ 8. 601\\ 8. 601\\ 8. 601\\ 8. 601\\ 8. 601\\ 9. 7\\ 9. 928\\ 7. 932\\ 7. 932\\ 7. 932\\ 7. 932\\ 7. 932\\ 7. 932\\ 7. 555\\ 7. 7556\\ 7. 555\\$

Figure S102. ¹³C NMR Spectrum of *cis*-4f (100 MHz, CDCl₃)

Figure S104. ¹³C NMR Spectrum of *trans*-4f (100 MHz, CDCl₃)
$\begin{array}{c} 8, 536\\ 8, 535\\ 8, 555\\ 8, 555\\ 8, 555\\ 8, 555\\ 8, 555\\ 8, 555\\ 8, 555$

Figure S106. ¹³C NMR Spectrum of *cis*-4g (100 MHz, CDCl₃)

Figure S108. ¹³C NMR Spectrum of *trans*-4g (100 MHz, CDCl₃)

$\begin{array}{c} 8, 53, 4\\ 8, 522\\ 8, 5$

Figure S112. ¹³C NMR Spectrum of *cis*-4i (100 MHz, CDCl₃)

Figure S116. ¹³C NMR Spectrum of *cis*-4j (100 MHz, CDCl₃)

Figure S118. ¹³C NMR Spectrum of *trans*-4j (100 MHz, CDCl₃)

Figure S120. ¹³C NMR Spectrum of *cis*-4k (100 MHz, CDCl₃)

Figure S122. ¹³C NMR Spectrum of *trans*-4k (100 MHz, CDCl₃)

Figure S123. ¹H NMR Spectrum of *cis*-4l (400 MHz, CDCl₃)

Figure S124. ¹³C NMR Spectrum of *cis*-4l (100 MHz, CDCl₃)

Figure S126. ¹³C NMR Spectrum of *trans*-4l (100 MHz, CDCl₃)

Figure S128. ¹³C NMR Spectrum of *cis*-4m (100 MHz, CDCl₃)

Figure S129. ¹H NMR Spectrum of *trans*-4m (400 MHz, CDCl₃)

Figure S130. ¹³C NMR Spectrum of *trans*-4m (100 MHz, CDCl₃)

Figure S131. ¹H NMR Spectrum of 5a (400 MHz, CDCl₃)

Figure S132. ¹³C NMR Spectrum of 5a (100 MHz, CDCl₃)

G. X-ray crystallographic data

Figure S133. The Diamond diagram of *cis*-3a (thermal ellipsoids are shown at 50% probability)

Sample Preparation: A crystalline solid was obtained via slow evaporation of

compound **3a** in EA at room temperature.

Crystal data and structure refinement for compound *cis*-3a (CCDC: 2141258)

Table S1 Crystal data and structure relinement for <i>cis</i> -sa.	
Identification code	cis-3a
Empirical formula	$C_{16}H_{11}N_3$
Formula weight	245.28
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	9.3594(9)
b/Å	12.4742(12)
c/Å	11.0555(12)
$\alpha/^{\circ}$	90
$\beta^{\prime \circ}$	95.258(4)
$\gamma^{/\circ}$	90
Volume/Å ³	1285.3(2)
Z	4
$\rho_{calc}g/cm^3$	1.268
μ/mm^{-1}	0.078
F(000)	512.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.2
Radiation	MoKa ($\lambda = 0.71076$)
2Θ range for data collection/°	6.364 to 55.156
Index ranges	$-12 \le h \le 12, -16 \le k \le 15, -14 \le l \le 14$
Reflections collected	16661
Independent reflections	2862 [$R_{int} = 0.0779, R_{sigma} = 0.0562$]
Data/restraints/parameters	2862/0/176
Goodness-of-fit on F ²	1.074
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0629, wR_2 = 0.1279$
Final R indexes [all data]	$R_1 = 0.0961, wR_2 = 0.1408$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.16

Table S1 Crystal data and structure refinement for cis-3a.

Figure S134. The Diamond diagram of *trans*-4b (thermal ellipsoids are shown at 50% probability)

Sample Preparation: A crystalline solid was obtained via slow evaporation of

compound *trans*-4b in EA at room temperature.

Crystal data and structure refinement for compound *trans*-4b (CCDC: 2142244)

Table S2 Crystal data and structure refinement for <i>trans</i> -4b.	
trans-4b	
$C_{17}H_{13}N_3$	
259.31	
273.15	
orthorhombic	
Pna2 ₁	
9.1611(17)	
28.828(6)	
5.3391(12)	
90	
90	
90	
1410.0(5)	
4	
1.2214	
0.074	
544.2	
0.2 imes 0.2 imes 0.2	
Mo Ka ($\lambda = 0.71073$)	
5.66 to 50	
$-11 \le h \le 11, -37 \le k \le 36, -6 \le l \le 6$	
17796	
2437 [$R_{int} = 0.0486, R_{sigma} = 0.0477$]	
2437/1/182	
1.036	
$R_1 = 0.1207, wR_2 = 0.3122$	
$R_1 = 0.1316, wR_2 = 0.3193$	
0.47/-0.46	

Table S2 Crystal data and structure refinement for *trans*-4b