Electronic Supplementary Information

Magnetic Nanocomposites based on Zn,Al-LDH intercalated with Citric and EDTA groups for the removal of U(VI) from environmental and wastewater: Synergistic Effect and Adsorption Mechanism Study

Natalia Kobylinska*, Liubov Puzyrnaya, Galina Pshinko Dumansky Institute of Colloid and Water Chemistry, National Academy of Sciences of Ukraine, 42 Akad. Vernads'koho Blvd., Kyiv, 03142, Ukraine

Corresponding author: Dr. Natalia Kobylinska e-mail: kobilinskaya@univ.kiev.ua

Fig. S1. SEM images of bare Fe₃O₄ (a), Zn,Al-LDH/Cit (b), Fe₃O₄/Zn,Al-LDH/Cit (c), Zn,Al-LDH/EDTA (d) and $Fe_3O_4/Zn, Al-LDH/EDTA$ (e) samples.

Fig. S2. XRD pattern of initial Zn,Al-LDH/CO₃ sample.

Fig. S3. The effect pH on the distribution of U(VI) forms in aqueous solution containing various concentrations of CO_3^{2-i} ions: 0.01 mmol/L (a) i 5.0 mmol/L (b). (Conditions: C(U(VI)) = 0.1 mmol/L, calculated with MEDUZA).

Fig. S4. Effect of initial (pH₀, *a*) and equilibrium (pH_e, b) pH on U(VI) removal by obtained samples: prictine Fe_3O_4 (a), Zn, Al-LDH/Cit (b), Fe_3O_4/Zn , Al-LDH/Cit (c), Zn, Al-LDH/EDTA (d) and Fe_3O_4/Zn , Al-LDH/EDTA (*Conditions*: C₀(U(VI)) = 0.1 mol/L, V/m = 500 cm³/g, time 1 h).

Fig. S5. Pseuvdo-first-order (a) and pseuvdo-second-order (b) kinetic plots for Uu(VI) adsorption onto Fe_3O_4/Zn , Al-LDH/EDTA (1), Fe_3O_4/Zn , Al-LDH/Cit (2) and Zn, Al-LDH/Cit (3).

Table. S1. Equilibrium constants of U(VI) with Citrate and EDTA ligands in aqueous solution [1].

Equilibrium reactions	log ₁₀ β	Remarks/Conversations
$(U(VI)O_2)^{2+} + (EDTA)^{4-} \leftrightarrow U(VI)O_2EDTA^{2-}$	10.9028	Original data for β : $\log_{10}\beta$ =9.28, at I=1.0 M
$H^{+} + (U(VI)O_{2})^{2+} + (EDTA)^{4-} \leftrightarrow$	19.62945	$(UO_2) + HL \leftrightarrow (UO_2)HL \log_{10}\beta = 7.40, I=1.0 M$
(U(VI)O ₂)H(EDTA) ⁻		$H + L \leftrightarrow HL \log_{10}\beta = 10.09370, I=1.0 M$
		$(UO_2) + H + L \leftrightarrow (UO_2)HL \log_{10}\beta = 17.49370, I=1.0 M$
		$I = 0 M: log_{10}\beta = 19.62945$
$2(U(VI)O_2)^{2+} + (EDTA)^{4-} \leftrightarrow (U(VI)O_2)_2 EDTA (aq)$	20.43290	Original data for β : $\log_{10}\beta = 17.87$, at I=1.0 M
$2(U(VI)O_2)^{2+} + (OH)^{-} + (EDTA)^{4-} \leftrightarrow$	29.41674	$(UO_2)_2L \leftrightarrow (UO_2)_2(OH)L + H \log_{10}\beta = -4.81, I=1.0 M$
$(U(VI)O_2)_2EDTA(OH)^-$		$2(UO_2) + L \leftrightarrow (UO_2)_2 L$ $\log_{10}\beta = 17.99498, I=1.0 M$
		$OH + H \leftrightarrow H_2O$ $\log_{10}\beta = 13.79384, I=1.0 M$
		$2(UO_2) + L \leftrightarrow (UO_2)_2L_2$ $\log_{10}\beta = 26.97882, I=1.0 M$
		$I = 0 M: log_{10}\beta = 29.41674$
$2(U(VI)O_2)^{2+} + 2(EDTA)^{4-} \leftrightarrow$	29.33290	$(UO_2)_2L + L \leftrightarrow (UO_2)_2L_2 + H \log_{10}\beta = 8.90, I=1.0 M$
$(U(VI)O_2)_2(EDTA)_2^{4-}$		$2(UO_2) + L \leftrightarrow (UO_2)_2 L$ $\log_{10}\beta = 17.99498$, I=1.0 M
		$2(UO_2) + 2L \leftrightarrow (UO_2)_2L_2$ $\log_{10}\beta = 26.89498, I=1.0 M$
		$I = 0 M: \log_{10}\beta = 29.33290$
$4(U(VI)O_2)^{2+} + 4OH^- + 2(EDTA)^{4-} \leftrightarrow$	74.17224	$4(\mathrm{UO}_2) + 2\mathrm{L} \leftrightarrow (\mathrm{UO}_2)_2(\mathrm{OH})_4\mathrm{L}_2 + 4\mathrm{H}\log_{10}\beta = 15.34,$
$(U(VI)O_2)_6(OH)_4(EDTA)_2^{4-}$		I=1.0 M
		$4OH + 4H \leftrightarrow 4H_2O \qquad \log_{10}\beta = 55.17536, I=1.0 M$
		$4(\mathrm{UO}_2) + 2\mathrm{L} + 4\mathrm{OH} \leftrightarrow (\mathrm{UO}_2)_4\mathrm{L}_2 \log_{10}\beta = 70.5153, \mathrm{I}=1.0\mathrm{M}$
		$I = 0 M: \log_{10}\beta = 74.17224$
$6(\mathrm{U}(\mathrm{VI})\mathrm{O}_2)^{2+} + 4\mathrm{OH}^{-} + 3(\mathrm{EDTA})^{4-} \leftrightarrow$	95.57016	$6(\mathrm{UO}_2) + 3\mathrm{L} \leftrightarrow (\mathrm{UO}_2)_6(\mathrm{OH})_4\mathrm{L}_3 + 4\mathrm{H}\log_{10}\beta = 34.3, \mathrm{I}=1.0\mathrm{M}$
$(U(VI)O_2)_6(OH)_4(EDTA)_3^{4-}$		$4OH + 4H \leftrightarrow 4H_2O \qquad \qquad \log_{10}\beta = 55.17536, I=1.0 M$
		$6(\mathrm{UO}_2) + 3\mathrm{L} + 4\mathrm{OH} \leftrightarrow (\mathrm{UO}_2)_6(\mathrm{OH})_4\mathrm{L}_3 \log_{10}\beta = 89.5,$
		I=1.0M
		$I = 0 \text{ M: } \log_{10}\beta = 95.57016$
$(U(VI)O_2)^{2+} + (Citrate)^{3-} \leftrightarrow (U(VI)O_2)(Citrate)^{-}$	8.68145	Original data for β : $\log_{10}\beta$ =7.4, at I=0.1 M
$2(U(VI)O_2)^{2+} + 2(Citrate)^{3-} \leftrightarrow$	21.21933	Original data for β : $\log_{10}\beta = 18.87$, at I=0.1 M
$(U(VI)O_2)_2(Citrate)_2^2$		

Fig. S6. Linear fitting of adsorption isotherms with Langmuir (*a*) and Freundlish (*b*) equations for U(VI) on obtained samples.

Reference

^{1.} Wilko Verweij, Jean-Pierre Simonin. Implementing the Mean Spherical Approximation Model in the Speciation Code CHEAQS Next at High Salt Concentrations. Journal of Solution Chemistry **2020**, *49* (11), 1319-1327. https://doi.org/10.1007/s10953-020-01008-9.